1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCTEVALUATORS_H
#define EIGEN_PRODUCTEVALUATORS_H
namespace Eigen {
namespace internal {
/** \internal
* Evaluator of a product expression.
* Since products require special treatments to handle all possible cases,
* we simply deffer the evaluation logic to a product_evaluator class
* which offers more partial specialization possibilities.
*
* \sa class product_evaluator
*/
template<typename Lhs, typename Rhs, int Options>
struct evaluator<Product<Lhs, Rhs, Options> >
: public product_evaluator<Product<Lhs, Rhs, Options> >
{
typedef Product<Lhs, Rhs, Options> XprType;
typedef product_evaluator<XprType> Base;
typedef evaluator type;
typedef evaluator nestedType;
evaluator(const XprType& xpr) : Base(xpr) {}
};
// Catch scalar * ( A * B ) and transform it to (A*scalar) * B
// TODO we should apply that rule only if that's really helpful
template<typename Lhs, typename Rhs, typename Scalar>
struct evaluator<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > >
: public evaluator<Product<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,const Lhs>, Rhs, DefaultProduct> >
{
typedef CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > XprType;
typedef evaluator<Product<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,const Lhs>, Rhs, DefaultProduct> > Base;
typedef evaluator type;
typedef evaluator nestedType;
evaluator(const XprType& xpr)
: Base(xpr.functor().m_other * xpr.nestedExpression().lhs() * xpr.nestedExpression().rhs())
{}
};
template<typename Lhs, typename Rhs, int DiagIndex>
struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
: public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
{
typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
typedef evaluator type;
typedef evaluator nestedType;
evaluator(const XprType& xpr)
: Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
xpr.index() ))
{}
};
// Helper class to perform a matrix product with the destination at hand.
// Depending on the sizes of the factors, there are different evaluation strategies
// as controlled by internal::product_type.
template< typename Lhs, typename Rhs,
typename LhsShape = typename evaluator_traits<Lhs>::Shape,
typename RhsShape = typename evaluator_traits<Rhs>::Shape,
int ProductType = internal::product_type<Lhs,Rhs>::value>
struct generic_product_impl;
template<typename Lhs, typename Rhs>
struct evaluator_traits<Product<Lhs, Rhs, DefaultProduct> >
: evaluator_traits_base<Product<Lhs, Rhs, DefaultProduct> >
{
enum { AssumeAliasing = 1 };
};
// This is the default evaluator implementation for products:
// It creates a temporary and call generic_product_impl
template<typename Lhs, typename Rhs, int ProductTag, typename LhsShape, typename RhsShape>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, LhsShape, RhsShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar>
: public evaluator<typename Product<Lhs, Rhs, DefaultProduct>::PlainObject>::type
{
typedef Product<Lhs, Rhs, DefaultProduct> XprType;
// enum {
// CoeffReadCost = 0 // FIXME why is it needed? (this was already the case before the evaluators, see traits<ProductBase>)
// };
typedef typename XprType::PlainObject PlainObject;
typedef typename evaluator<PlainObject>::type Base;
product_evaluator(const XprType& xpr)
: m_result(xpr.rows(), xpr.cols())
{
::new (static_cast<Base*>(this)) Base(m_result);
// FIXME shall we handle nested_eval here?
// typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
// typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
// typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
// typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
//
// const LhsNested lhs(xpr.lhs());
// const RhsNested rhs(xpr.rhs());
//
// generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
}
protected:
PlainObject m_result;
};
// Dense = Product
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
{
typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
{
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
}
};
// Dense += Product
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::add_assign_op<Scalar>, Dense2Dense, Scalar>
{
typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar> &)
{
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
}
};
// Dense -= Product
template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::sub_assign_op<Scalar>, Dense2Dense, Scalar>
{
typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar> &)
{
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
}
};
// Dense ?= scalar * Product
// TODO we should apply that rule if that's really helpful
// for instance, this is not good for inner products
template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis>
struct Assignment<DstXprType, CwiseUnaryOp<internal::scalar_multiple_op<ScalarBis>,
const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense, Scalar>
{
typedef CwiseUnaryOp<internal::scalar_multiple_op<ScalarBis>,
const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
{
// TODO use operator* instead of prod() once we have made enough progress
call_assignment(dst.noalias(), prod(src.functor().m_other * src.nestedExpression().lhs(), src.nestedExpression().rhs()), func);
}
};
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
{
template<typename Dst>
static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
}
template<typename Dst>
static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
}
template<typename Dst>
static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
};
/***********************************************************************
* Implementation of outer dense * dense vector product
***********************************************************************/
// Column major result
template<typename Dst, typename Lhs, typename Rhs, typename Func>
EIGEN_DONT_INLINE void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
{
typedef typename Dst::Index Index;
// FIXME make sure lhs is sequentially stored
// FIXME not very good if rhs is real and lhs complex while alpha is real too
// FIXME we should probably build an evaluator for dst and rhs
const Index cols = dst.cols();
for (Index j=0; j<cols; ++j)
func(dst.col(j), rhs.coeff(0,j) * lhs);
}
// Row major result
template<typename Dst, typename Lhs, typename Rhs, typename Func>
EIGEN_DONT_INLINE void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&) {
typedef typename Dst::Index Index;
// FIXME make sure rhs is sequentially stored
// FIXME not very good if lhs is real and rhs complex while alpha is real too
// FIXME we should probably build an evaluator for dst and lhs
const Index rows = dst.rows();
for (Index i=0; i<rows; ++i)
func(dst.row(i), lhs.coeff(i,0) * rhs);
}
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
{
template<typename T> struct IsRowMajor : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
// TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
struct adds {
Scalar m_scale;
adds(const Scalar& s) : m_scale(s) {}
template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
dst.const_cast_derived() += m_scale * src;
}
};
template<typename Dst>
static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
internal::outer_product_selector_run(dst, lhs, rhs, set(), IsRowMajor<Dst>());
}
template<typename Dst>
static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
internal::outer_product_selector_run(dst, lhs, rhs, add(), IsRowMajor<Dst>());
}
template<typename Dst>
static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
internal::outer_product_selector_run(dst, lhs, rhs, sub(), IsRowMajor<Dst>());
}
template<typename Dst>
static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), IsRowMajor<Dst>());
}
};
// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
template<typename Lhs, typename Rhs, typename Derived>
struct generic_product_impl_base
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dst>
static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }
template<typename Dst>
static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }
template<typename Dst>
static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
template<typename Dst>
static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{ Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }
};
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
typedef typename internal::conditional<int(Side)==OnTheRight,Lhs,Rhs>::type MatrixType;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
internal::gemv_dense_sense_selector<Side,
(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
>::run(lhs, rhs, dst, alpha);
}
};
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dst>
static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
// TODO: use the following instead of calling call_assignment, same for the other methods
// dst = lazyprod(lhs,rhs);
call_assignment(dst, lazyprod(lhs,rhs), internal::assign_op<Scalar>());
}
template<typename Dst>
static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
// dst += lazyprod(lhs,rhs);
call_assignment(dst, lazyprod(lhs,rhs), internal::add_assign_op<Scalar>());
}
template<typename Dst>
static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
// dst -= lazyprod(lhs,rhs);
call_assignment(dst, lazyprod(lhs,rhs), internal::sub_assign_op<Scalar>());
}
// template<typename Dst>
// static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
// { dst += alpha * lazyprod(lhs,rhs); }
};
// This specialization enforces the use of a coefficient-based evaluation strategy
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
: generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};
// Case 2: Evaluate coeff by coeff
//
// This is mostly taken from CoeffBasedProduct.h
// The main difference is that we add an extra argument to the etor_product_*_impl::run() function
// for the inner dimension of the product, because evaluator object do not know their size.
template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl;
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl;
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape, typename Lhs::Scalar, typename Rhs::Scalar >
: evaluator_base<Product<Lhs, Rhs, LazyProduct> >
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketScalar PacketScalar;
typedef typename XprType::PacketReturnType PacketReturnType;
product_evaluator(const XprType& xpr)
: m_lhs(xpr.lhs()),
m_rhs(xpr.rhs()),
m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that!
m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
// or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
m_innerDim(xpr.lhs().cols())
{ }
// Everything below here is taken from CoeffBasedProduct.h
typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
typedef typename evaluator<LhsNestedCleaned>::type LhsEtorType;
typedef typename evaluator<RhsNestedCleaned>::type RhsEtorType;
enum {
RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime,
PacketSize = packet_traits<Scalar>::size,
LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
CoeffReadCost = (InnerSize == Dynamic || LhsCoeffReadCost==Dynamic || RhsCoeffReadCost==Dynamic || NumTraits<Scalar>::AddCost==Dynamic || NumTraits<Scalar>::MulCost==Dynamic) ? Dynamic
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
LhsFlags = LhsEtorType::Flags,
RhsFlags = RhsEtorType::Flags,
LhsRowMajor = LhsFlags & RowMajorBit,
RhsRowMajor = RhsFlags & RowMajorBit,
SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
&& (ColsAtCompileTime == Dynamic
|| ( (ColsAtCompileTime % packet_traits<Scalar>::size) == 0
&& (RhsFlags&AlignedBit)
)
),
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
&& (RowsAtCompileTime == Dynamic
|| ( (RowsAtCompileTime % packet_traits<Scalar>::size) == 0
&& (LhsFlags&AlignedBit)
)
),
EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: (RhsRowMajor && !CanVectorizeLhs),
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
| (EvalToRowMajor ? RowMajorBit : 0)
| (CanVectorizeLhs ? (LhsFlags & AlignedBit) : 0)
| (CanVectorizeRhs ? (RhsFlags & AlignedBit) : 0)
// TODO enable vectorization for mixed types
| (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
*/
CanVectorizeInner = SameType
&& LhsRowMajor
&& (!RhsRowMajor)
&& (LhsFlags & RhsFlags & ActualPacketAccessBit)
&& (LhsFlags & RhsFlags & AlignedBit)
&& (InnerSize % packet_traits<Scalar>::size == 0)
};
const CoeffReturnType coeff(Index row, Index col) const
{
// TODO check performance regression wrt to Eigen 3.2 which has special handling of this function
return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
* TODO: this seems possible when the result is a vector
*/
const CoeffReturnType coeff(Index index) const
{
const Index row = RowsAtCompileTime == 1 ? 0 : index;
const Index col = RowsAtCompileTime == 1 ? index : 0;
// TODO check performance regression wrt to Eigen 3.2 which has special handling of this function
return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
template<int LoadMode>
const PacketReturnType packet(Index row, Index col) const
{
PacketScalar res;
typedef etor_product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
Unroll ? InnerSize-1 : Dynamic,
LhsEtorType, RhsEtorType, PacketScalar, LoadMode> PacketImpl;
PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
LhsEtorType m_lhsImpl;
RhsEtorType m_rhsImpl;
// TODO: Get rid of m_innerDim if known at compile time
Index m_innerDim;
};
template<typename Lhs, typename Rhs>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar >
: product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar >
{
typedef Product<Lhs, Rhs, DefaultProduct> XprType;
typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape, typename Lhs::Scalar, typename Rhs::Scalar > Base;
product_evaluator(const XprType& xpr)
: Base(BaseProduct(xpr.lhs(),xpr.rhs()))
{}
};
/****************************************
*** Coeff based product, Packet path ***
****************************************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
}
};
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
eigen_assert(innerDim>0 && "you are using a non initialized matrix");
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
for(Index i = 1; i < innerDim; ++i)
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
eigen_assert(innerDim>0 && "you are using a non initialized matrix");
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
for(Index i = 1; i < innerDim; ++i)
res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
}
};
/***************************************************************************
* Triangular products
***************************************************************************/
template<int Mode, bool LhsIsTriangular,
typename Lhs, bool LhsIsVector,
typename Rhs, bool RhsIsVector>
struct triangular_product_impl;
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
/***************************************************************************
* SelfAdjoint products
***************************************************************************/
template <typename Lhs, int LhsMode, bool LhsIsVector,
typename Rhs, int RhsMode, bool RhsIsVector>
struct selfadjoint_product_impl;
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
/***************************************************************************
* Diagonal products
***************************************************************************/
template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
struct diagonal_product_evaluator_base
: evaluator_base<Derived>
{
typedef typename MatrixType::Index Index;
typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
public:
enum {
CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost,
MatrixFlags = evaluator<MatrixType>::Flags,
DiagFlags = evaluator<DiagonalType>::Flags,
_StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
_ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
_SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
// FIXME currently we need same types, but in the future the next rule should be the one
//_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
_LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0) | AlignedBit
//(int(MatrixFlags)&int(DiagFlags)&AlignedBit),
};
diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
: m_diagImpl(diag), m_matImpl(mat)
{
}
EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
{
return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
}
protected:
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
{
return internal::pmul(m_matImpl.template packet<LoadMode>(row, col),
internal::pset1<PacketScalar>(m_diagImpl.coeff(id)));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
{
enum {
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
DiagonalPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagFlags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned)
};
return internal::pmul(m_matImpl.template packet<LoadMode>(row, col),
m_diagImpl.template packet<DiagonalPacketLoadMode>(id));
}
typename evaluator<DiagonalType>::nestedType m_diagImpl;
typename evaluator<MatrixType>::nestedType m_matImpl;
};
// diagonal * dense
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape, typename Lhs::Scalar, typename Rhs::Scalar>
: diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
{
typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
using Base::m_diagImpl;
using Base::m_matImpl;
using Base::coeff;
using Base::packet_impl;
typedef typename Base::Scalar Scalar;
typedef typename Base::Index Index;
typedef typename Base::PacketScalar PacketScalar;
typedef Product<Lhs, Rhs, ProductKind> XprType;
typedef typename XprType::PlainObject PlainObject;
enum {
StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor
};
product_evaluator(const XprType& xpr)
: Base(xpr.rhs(), xpr.lhs().diagonal())
{
}
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
{
return this->template packet_impl<LoadMode>(row,col, row,
typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
{
return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
}
};
// dense * diagonal
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape, typename Lhs::Scalar, typename Rhs::Scalar>
: diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
{
typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
using Base::m_diagImpl;
using Base::m_matImpl;
using Base::coeff;
using Base::packet_impl;
typedef typename Base::Scalar Scalar;
typedef typename Base::Index Index;
typedef typename Base::PacketScalar PacketScalar;
typedef Product<Lhs, Rhs, ProductKind> XprType;
typedef typename XprType::PlainObject PlainObject;
enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor };
product_evaluator(const XprType& xpr)
: Base(xpr.lhs(), xpr.rhs().diagonal())
{
}
EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
{
return this->template packet_impl<LoadMode>(row,col, col,
typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
{
return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
}
};
/***************************************************************************
* Products with permutation matrices
***************************************************************************/
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs, Rhs, PermutationShape, DenseShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
permut_matrix_product_retval<Lhs, Rhs, OnTheLeft, false> pmpr(lhs, rhs);
pmpr.evalTo(dst);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs, Rhs, DenseShape, PermutationShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
permut_matrix_product_retval<Rhs, Lhs, OnTheRight, false> pmpr(rhs, lhs);
pmpr.evalTo(dst);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Transpose<Lhs>, Rhs, PermutationShape, DenseShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
{
permut_matrix_product_retval<Lhs, Rhs, OnTheLeft, true> pmpr(lhs.nestedPermutation(), rhs);
pmpr.evalTo(dst);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs, Transpose<Rhs>, DenseShape, PermutationShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
{
permut_matrix_product_retval<Rhs, Lhs, OnTheRight, true> pmpr(rhs.nestedPermutation(), lhs);
pmpr.evalTo(dst);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PRODUCT_EVALUATORS_H
|