aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Product.h
blob: 1363e83b6dc63c85a34fd8bef074a5ce9868001d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H

/** \class GeneralProduct
  * \ingroup Core_Module
  *
  * \brief Expression of the product of two general matrices or vectors
  *
  * \param LhsNested the type used to store the left-hand side
  * \param RhsNested the type used to store the right-hand side
  * \param ProductMode the type of the product
  *
  * This class represents an expression of the product of two general matrices.
  * We call a general matrix, a dense matrix with full storage. For instance,
  * This excludes triangular, selfadjoint, and sparse matrices.
  * It is the return type of the operator* between general matrices. Its template
  * arguments are determined automatically by ProductReturnType. Therefore,
  * GeneralProduct should never be used direclty. To determine the result type of a
  * function which involves a matrix product, use ProductReturnType::Type.
  *
  * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
  */
template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
class GeneralProduct;

enum {
  Large = 2,
  Small = 3
};

namespace internal {

template<int Rows, int Cols, int Depth> struct product_type_selector;

template<int Size, int MaxSize> struct product_size_category
{
  enum { is_large = MaxSize == Dynamic ||
                    Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
         value = is_large  ? Large
               : Size == 1 ? 1
                           : Small
  };
};

template<typename Lhs, typename Rhs> struct product_type
{
  typedef typename remove_all<Lhs>::type _Lhs;
  typedef typename remove_all<Rhs>::type _Rhs;
  enum {
    MaxRows  = _Lhs::MaxRowsAtCompileTime,
    Rows  = _Lhs::RowsAtCompileTime,
    MaxCols  = _Rhs::MaxColsAtCompileTime,
    Cols  = _Rhs::ColsAtCompileTime,
    MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
                                           _Rhs::MaxRowsAtCompileTime),
    Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
                                        _Rhs::RowsAtCompileTime),
    LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
  };

  // the splitting into different lines of code here, introducing the _select enums and the typedef below,
  // is to work around an internal compiler error with gcc 4.1 and 4.2.
private:
  enum {
    rows_select = product_size_category<Rows,MaxRows>::value,
    cols_select = product_size_category<Cols,MaxCols>::value,
    depth_select = product_size_category<Depth,MaxDepth>::value
  };
  typedef product_type_selector<rows_select, cols_select, depth_select> selector;

public:
  enum {
    value = selector::ret
  };
#ifdef EIGEN_DEBUG_PRODUCT
  static void debug()
  {
      EIGEN_DEBUG_VAR(Rows);
      EIGEN_DEBUG_VAR(Cols);
      EIGEN_DEBUG_VAR(Depth);
      EIGEN_DEBUG_VAR(rows_select);
      EIGEN_DEBUG_VAR(cols_select);
      EIGEN_DEBUG_VAR(depth_select);
      EIGEN_DEBUG_VAR(value);
  }
#endif
};


/* The following allows to select the kind of product at compile time
 * based on the three dimensions of the product.
 * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N>  struct product_type_selector<M,N,1>              { enum { ret = OuterProduct }; };
template<int Depth>     struct product_type_selector<1,    1,    Depth>  { enum { ret = InnerProduct }; };
template<>              struct product_type_selector<1,    1,    1>      { enum { ret = InnerProduct }; };
template<>              struct product_type_selector<Small,1,    Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<1,    Small,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small,Small,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small, Small, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
template<>              struct product_type_selector<Small, Large, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
template<>              struct product_type_selector<Large, Small, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
template<>              struct product_type_selector<1,    Large,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<1,    Large,Large>  { enum { ret = GemvProduct }; };
template<>              struct product_type_selector<1,    Small,Large>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Large,1,    Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Large,1,    Large>  { enum { ret = GemvProduct }; };
template<>              struct product_type_selector<Small,1,    Large>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small,Small,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Small,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Small,Large,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Large,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Small,Small>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Small,Large,Small>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Large,Small>  { enum { ret = GemmProduct }; };

} // end namespace internal

/** \class ProductReturnType
  * \ingroup Core_Module
  *
  * \brief Helper class to get the correct and optimized returned type of operator*
  *
  * \param Lhs the type of the left-hand side
  * \param Rhs the type of the right-hand side
  * \param ProductMode the type of the product (determined automatically by internal::product_mode)
  *
  * This class defines the typename Type representing the optimized product expression
  * between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
  * is the recommended way to define the result type of a function returning an expression
  * which involve a matrix product. The class Product should never be
  * used directly.
  *
  * \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
  */
template<typename Lhs, typename Rhs, int ProductType>
struct ProductReturnType
{
  // TODO use the nested type to reduce instanciations ????
//   typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
//   typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;

  typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
};

template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
{
  typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
  typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
  typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
};

template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{
  typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
  typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
  typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
};

// this is a workaround for sun CC
template<typename Lhs, typename Rhs>
struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{};

/***********************************************************************
*  Implementation of Inner Vector Vector Product
***********************************************************************/

// FIXME : maybe the "inner product" could return a Scalar
// instead of a 1x1 matrix ??
// Pro: more natural for the user
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);

namespace internal {

template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
 : traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
{};

}

template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, InnerProduct>
  : internal::no_assignment_operator,
    public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
{
    typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
  public:
    GeneralProduct(const Lhs& lhs, const Rhs& rhs)
    {
      EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

      Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
    }

    /** Convertion to scalar */
    operator const typename Base::Scalar() const {
      return Base::coeff(0,0);
    }
};

/***********************************************************************
*  Implementation of Outer Vector Vector Product
***********************************************************************/

namespace internal {
template<int StorageOrder> struct outer_product_selector;

template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
 : traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
{};

}

template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, OuterProduct>
  : public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
{
  public:
    EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)

    GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
    {
      EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
    }

    template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
    {
      internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha);
    }
};

namespace internal {

template<> struct outer_product_selector<ColMajor> {
  template<typename ProductType, typename Dest>
  static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
    typedef typename Dest::Index Index;
    // FIXME make sure lhs is sequentially stored
    // FIXME not very good if rhs is real and lhs complex while alpha is real too
    const Index cols = dest.cols();
    for (Index j=0; j<cols; ++j)
      dest.col(j) += (alpha * prod.rhs().coeff(j)) * prod.lhs();
  }
};

template<> struct outer_product_selector<RowMajor> {
  template<typename ProductType, typename Dest>
  static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
    typedef typename Dest::Index Index;
    // FIXME make sure rhs is sequentially stored
    // FIXME not very good if lhs is real and rhs complex while alpha is real too
    const Index rows = dest.rows();
    for (Index i=0; i<rows; ++i)
      dest.row(i) += (alpha * prod.lhs().coeff(i)) * prod.rhs();
  }
};

} // end namespace internal

/***********************************************************************
*  Implementation of General Matrix Vector Product
***********************************************************************/

/*  According to the shape/flags of the matrix we have to distinghish 3 different cases:
 *   1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
 *   2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
 *   3 - all other cases are handled using a simple loop along the outer-storage direction.
 *  Therefore we need a lower level meta selector.
 *  Furthermore, if the matrix is the rhs, then the product has to be transposed.
 */
namespace internal {

template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
 : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
{};

template<int Side, int StorageOrder, bool BlasCompatible>
struct gemv_selector;

} // end namespace internal

template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, GemvProduct>
  : public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
{
  public:
    EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)

    typedef typename Lhs::Scalar LhsScalar;
    typedef typename Rhs::Scalar RhsScalar;

    GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
    {
//       EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
//         YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
    }

    enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
    typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;

    template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
    {
      eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
      internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
                       bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
    }
};

namespace internal {

// The vector is on the left => transposition
template<int StorageOrder, bool BlasCompatible>
struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
  template<typename ProductType, typename Dest>
  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    Transpose<Dest> destT(dest);
    enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
    gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
      ::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
        (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
  }
};

template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;

template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
{
  EIGEN_STRONG_INLINE  Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
};

template<typename Scalar,int Size>
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
{
  EIGEN_STRONG_INLINE Scalar* data() { return 0; }
};

template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
{
  internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
  EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
};

template<> struct gemv_selector<OnTheRight,ColMajor,true>
{
  template<typename ProductType, typename Dest>
  static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    typedef typename ProductType::Index Index;
    typedef typename ProductType::LhsScalar   LhsScalar;
    typedef typename ProductType::RhsScalar   RhsScalar;
    typedef typename ProductType::Scalar      ResScalar;
    typedef typename ProductType::RealScalar  RealScalar;
    typedef typename ProductType::ActualLhsType ActualLhsType;
    typedef typename ProductType::ActualRhsType ActualRhsType;
    typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
    typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
    typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;

    const ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
    const ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());

    ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
                                  * RhsBlasTraits::extractScalarFactor(prod.rhs());

    enum {
      // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
      // on, the other hand it is good for the cache to pack the vector anyways...
      EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
      ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
      MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
    };

    gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;

    bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0));
    bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
    
    RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);

    ResScalar* actualDestPtr;
    bool freeDestPtr = false;
    if (evalToDest)
    {
      actualDestPtr = &dest.coeffRef(0);
    }
    else
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = dest.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      if((actualDestPtr = static_dest.data())==0)
      {
        freeDestPtr = true;
        actualDestPtr = ei_aligned_stack_new(ResScalar,dest.size());
      }
      if(!alphaIsCompatible)
      {
        MappedDest(actualDestPtr, dest.size()).setZero();
        compatibleAlpha = RhsScalar(1);
      }
      else
        MappedDest(actualDestPtr, dest.size()) = dest;
    }

    general_matrix_vector_product
      <Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
        actualLhs.rows(), actualLhs.cols(),
        &actualLhs.coeffRef(0,0), actualLhs.outerStride(),
        actualRhs.data(), actualRhs.innerStride(),
        actualDestPtr, 1,
        compatibleAlpha);

    if (!evalToDest)
    {
      if(!alphaIsCompatible)
        dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
      else
        dest = MappedDest(actualDestPtr, dest.size());
      if(freeDestPtr) ei_aligned_stack_delete(ResScalar, actualDestPtr, dest.size());
    }
  }
};

template<> struct gemv_selector<OnTheRight,RowMajor,true>
{
  template<typename ProductType, typename Dest>
  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    typedef typename ProductType::LhsScalar LhsScalar;
    typedef typename ProductType::RhsScalar RhsScalar;
    typedef typename ProductType::Scalar    ResScalar;
    typedef typename ProductType::Index Index;
    typedef typename ProductType::ActualLhsType ActualLhsType;
    typedef typename ProductType::ActualRhsType ActualRhsType;
    typedef typename ProductType::_ActualRhsType _ActualRhsType;
    typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
    typedef typename ProductType::RhsBlasTraits RhsBlasTraits;

    typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
    typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());

    ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
                                  * RhsBlasTraits::extractScalarFactor(prod.rhs());

    enum {
      // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
      // on, the other hand it is good for the cache to pack the vector anyways...
      DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
    };

    gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;

    RhsScalar* actualRhsPtr;
    bool freeRhsPtr = false;
    if (DirectlyUseRhs)
    {
      actualRhsPtr = const_cast<RhsScalar*>(&actualRhs.coeffRef(0));
    }
    else
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      int size = actualRhs.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      if((actualRhsPtr = static_rhs.data())==0)
      {
        freeRhsPtr = true;
        actualRhsPtr = ei_aligned_stack_new(RhsScalar, actualRhs.size());
      }
      Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
    }

    general_matrix_vector_product
      <Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
        actualLhs.rows(), actualLhs.cols(),
        &actualLhs.coeffRef(0,0), actualLhs.outerStride(),
        actualRhsPtr, 1,
        &dest.coeffRef(0,0), dest.innerStride(),
        actualAlpha);

    if((!DirectlyUseRhs) && freeRhsPtr) ei_aligned_stack_delete(RhsScalar, actualRhsPtr, prod.rhs().size());
  }
};

template<> struct gemv_selector<OnTheRight,ColMajor,false>
{
  template<typename ProductType, typename Dest>
  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    typedef typename Dest::Index Index;
    // TODO makes sure dest is sequentially stored in memory, otherwise use a temp
    const Index size = prod.rhs().rows();
    for(Index k=0; k<size; ++k)
      dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
  }
};

template<> struct gemv_selector<OnTheRight,RowMajor,false>
{
  template<typename ProductType, typename Dest>
  static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
  {
    typedef typename Dest::Index Index;
    // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
    const Index rows = prod.rows();
    for(Index i=0; i<rows; ++i)
      dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
  }
};

} // end namespace internal

/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/

/** \returns the matrix product of \c *this and \a other.
  *
  * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
  *
  * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
  */
template<typename Derived>
template<typename OtherDerived>
inline const typename ProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
  // A note regarding the function declaration: In MSVC, this function will sometimes
  // not be inlined since DenseStorage is an unwindable object for dynamic
  // matrices and product types are holding a member to store the result.
  // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
  enum {
    ProductIsValid =  Derived::ColsAtCompileTime==Dynamic
                   || OtherDerived::RowsAtCompileTime==Dynamic
                   || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
    AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
    SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
  };
  // note to the lost user:
  //    * for a dot product use: v1.dot(v2)
  //    * for a coeff-wise product use: v1.cwiseProduct(v2)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
    INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
    INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
#ifdef EIGEN_DEBUG_PRODUCT
  internal::product_type<Derived,OtherDerived>::debug();
#endif
  return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}

/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
  *
  * The returned product will behave like any other expressions: the coefficients of the product will be
  * computed once at a time as requested. This might be useful in some extremely rare cases when only
  * a small and no coherent fraction of the result's coefficients have to be computed.
  *
  * \warning This version of the matrix product can be much much slower. So use it only if you know
  * what you are doing and that you measured a true speed improvement.
  *
  * \sa operator*(const MatrixBase&)
  */
template<typename Derived>
template<typename OtherDerived>
const typename LazyProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
  enum {
    ProductIsValid =  Derived::ColsAtCompileTime==Dynamic
                   || OtherDerived::RowsAtCompileTime==Dynamic
                   || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
    AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
    SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
  };
  // note to the lost user:
  //    * for a dot product use: v1.dot(v2)
  //    * for a coeff-wise product use: v1.cwiseProduct(v2)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
    INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
    INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)

  return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}

#endif // EIGEN_PRODUCT_H