1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H
namespace Eigen {
template<typename Lhs, typename Rhs, int Option, typename StorageKind> class ProductImpl;
namespace internal {
// Determine the scalar of Product<Lhs, Rhs>. This is normally the same as Lhs::Scalar times
// Rhs::Scalar, but product with permutation matrices inherit the scalar of the other factor.
template<typename Lhs, typename Rhs, typename LhsShape = typename evaluator_traits<Lhs>::Shape,
typename RhsShape = typename evaluator_traits<Rhs>::Shape >
struct product_result_scalar
{
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
};
template<typename Lhs, typename Rhs, typename RhsShape>
struct product_result_scalar<Lhs, Rhs, PermutationShape, RhsShape>
{
typedef typename Rhs::Scalar Scalar;
};
template<typename Lhs, typename Rhs, typename LhsShape>
struct product_result_scalar<Lhs, Rhs, LhsShape, PermutationShape>
{
typedef typename Lhs::Scalar Scalar;
};
template<typename Lhs, typename Rhs, typename RhsShape>
struct product_result_scalar<Lhs, Rhs, TranspositionsShape, RhsShape>
{
typedef typename Rhs::Scalar Scalar;
};
template<typename Lhs, typename Rhs, typename LhsShape>
struct product_result_scalar<Lhs, Rhs, LhsShape, TranspositionsShape>
{
typedef typename Lhs::Scalar Scalar;
};
template<typename Lhs, typename Rhs, int Option>
struct traits<Product<Lhs, Rhs, Option> >
{
typedef typename remove_all<Lhs>::type LhsCleaned;
typedef typename remove_all<Rhs>::type RhsCleaned;
typedef traits<LhsCleaned> LhsTraits;
typedef traits<RhsCleaned> RhsTraits;
typedef MatrixXpr XprKind;
typedef typename product_result_scalar<LhsCleaned,RhsCleaned>::Scalar Scalar;
typedef typename product_promote_storage_type<typename LhsTraits::StorageKind,
typename RhsTraits::StorageKind,
internal::product_type<Lhs,Rhs>::ret>::ret StorageKind;
typedef typename promote_index_type<typename LhsTraits::StorageIndex,
typename RhsTraits::StorageIndex>::type StorageIndex;
enum {
RowsAtCompileTime = LhsTraits::RowsAtCompileTime,
ColsAtCompileTime = RhsTraits::ColsAtCompileTime,
MaxRowsAtCompileTime = LhsTraits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = RhsTraits::MaxColsAtCompileTime,
// FIXME: only needed by GeneralMatrixMatrixTriangular
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime),
// The storage order is somewhat arbitrary here. The correct one will be determined through the evaluator.
Flags = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? RowMajorBit
: (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0
: ( ((LhsTraits::Flags&NoPreferredStorageOrderBit) && (RhsTraits::Flags&RowMajorBit))
|| ((RhsTraits::Flags&NoPreferredStorageOrderBit) && (LhsTraits::Flags&RowMajorBit)) ) ? RowMajorBit
: NoPreferredStorageOrderBit
};
};
} // end namespace internal
/** \class Product
* \ingroup Core_Module
*
* \brief Expression of the product of two arbitrary matrices or vectors
*
* \tparam _Lhs the type of the left-hand side expression
* \tparam _Rhs the type of the right-hand side expression
*
* This class represents an expression of the product of two arbitrary matrices.
*
* The other template parameters are:
* \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct
*
*/
template<typename _Lhs, typename _Rhs, int Option>
class Product : public ProductImpl<_Lhs,_Rhs,Option,
typename internal::product_promote_storage_type<typename internal::traits<_Lhs>::StorageKind,
typename internal::traits<_Rhs>::StorageKind,
internal::product_type<_Lhs,_Rhs>::ret>::ret>
{
public:
typedef _Lhs Lhs;
typedef _Rhs Rhs;
typedef typename ProductImpl<
Lhs, Rhs, Option,
typename internal::product_promote_storage_type<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind,
internal::product_type<Lhs,Rhs>::ret>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
typedef typename internal::ref_selector<Lhs>::type LhsNested;
typedef typename internal::ref_selector<Rhs>::type RhsNested;
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
EIGEN_DEVICE_FUNC Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs)
{
eigen_assert(lhs.cols() == rhs.rows()
&& "invalid matrix product"
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
EIGEN_DEVICE_FUNC const LhsNestedCleaned& lhs() const { return m_lhs; }
EIGEN_DEVICE_FUNC const RhsNestedCleaned& rhs() const { return m_rhs; }
protected:
LhsNested m_lhs;
RhsNested m_rhs;
};
namespace internal {
template<typename Lhs, typename Rhs, int Option, int ProductTag = internal::product_type<Lhs,Rhs>::ret>
class dense_product_base
: public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
{};
/** Convertion to scalar for inner-products */
template<typename Lhs, typename Rhs, int Option>
class dense_product_base<Lhs, Rhs, Option, InnerProduct>
: public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
{
typedef Product<Lhs,Rhs,Option> ProductXpr;
typedef typename internal::dense_xpr_base<ProductXpr>::type Base;
public:
using Base::derived;
typedef typename Base::Scalar Scalar;
operator const Scalar() const
{
return internal::evaluator<ProductXpr>(derived()).coeff(0,0);
}
};
} // namespace internal
// Generic API dispatcher
template<typename Lhs, typename Rhs, int Option, typename StorageKind>
class ProductImpl : public internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type
{
public:
typedef typename internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type Base;
};
template<typename Lhs, typename Rhs, int Option>
class ProductImpl<Lhs,Rhs,Option,Dense>
: public internal::dense_product_base<Lhs,Rhs,Option>
{
typedef Product<Lhs, Rhs, Option> Derived;
public:
typedef typename internal::dense_product_base<Lhs, Rhs, Option> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
protected:
enum {
IsOneByOne = (RowsAtCompileTime == 1 || RowsAtCompileTime == Dynamic) &&
(ColsAtCompileTime == 1 || ColsAtCompileTime == Dynamic),
EnableCoeff = IsOneByOne || Option==LazyProduct
};
public:
EIGEN_DEVICE_FUNC Scalar coeff(Index row, Index col) const
{
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
return internal::evaluator<Derived>(derived()).coeff(row,col);
}
EIGEN_DEVICE_FUNC Scalar coeff(Index i) const
{
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
return internal::evaluator<Derived>(derived()).coeff(i);
}
};
} // end namespace Eigen
#endif // EIGEN_PRODUCT_H
|