1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H
/***************************
*** Forward declarations ***
***************************/
template<int VectorizationMode, int Index, typename Lhs, typename Rhs>
struct ei_product_coeff_impl;
template<int StorageOrder, int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl;
/** \class ProductReturnType
*
* \brief Helper class to get the correct and optimized returned type of operator*
*
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
* \param ProductMode the type of the product (determined automatically by ei_product_mode)
*
* This class defines the typename Type representing the optimized product expression
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
* is the recommended way to define the result type of a function returning an expression
* which involve a matrix product. The class Product or DiagonalProduct should never be
* used directly.
*
* \sa class Product, class DiagonalProduct, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename Lhs, typename Rhs, int ProductMode>
struct ProductReturnType
{
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef Product<LhsNested, RhsNested, ProductMode> Type;
};
// cache friendly specialization
// note that there is a DiagonalProduct specialization in DiagonalProduct.h
template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,CacheFriendlyProduct>
{
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename ei_nested<Rhs,Lhs::RowsAtCompileTime,
typename ei_eval_to_column_major<Rhs>::type
>::type RhsNested;
typedef Product<LhsNested, RhsNested, CacheFriendlyProduct> Type;
};
/* Helper class to determine the type of the product, can be either:
* - NormalProduct
* - CacheFriendlyProduct
* - DiagonalProduct
* - SparseProduct
*/
template<typename Lhs, typename Rhs> struct ei_product_mode
{
enum{
value = ((Rhs::Flags&Diagonal)==Diagonal) || ((Lhs::Flags&Diagonal)==Diagonal)
? DiagonalProduct
: (Rhs::Flags & Lhs::Flags & SparseBit)
? SparseProduct
: Lhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& ( Lhs::MaxRowsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|| Rhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD )
&& (!(Rhs::IsVectorAtCompileTime && (Lhs::Flags&RowMajorBit) && (!(Lhs::Flags&DirectAccessBit))))
&& (!(Lhs::IsVectorAtCompileTime && (!(Rhs::Flags&RowMajorBit)) && (!(Rhs::Flags&DirectAccessBit))))
? CacheFriendlyProduct
: NormalProduct };
};
/** \class Product
*
* \brief Expression of the product of two matrices
*
* \param LhsNested the type used to store the left-hand side
* \param RhsNested the type used to store the right-hand side
* \param ProductMode the type of the product
*
* This class represents an expression of the product of two matrices.
* It is the return type of the operator* between matrices. Its template
* arguments are determined automatically by ProductReturnType. Therefore,
* Product should never be used direclty. To determine the result type of a
* function which involves a matrix product, use ProductReturnType::Type.
*
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename LhsNested, typename RhsNested, int ProductMode>
struct ei_traits<Product<LhsNested, RhsNested, ProductMode> >
{
// clean the nested types:
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
typedef typename _LhsNested::Scalar Scalar;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
InnerSize = EIGEN_ENUM_MIN(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
LhsRowMajor = LhsFlags & RowMajorBit,
RhsRowMajor = RhsFlags & RowMajorBit,
CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
&& (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
&& (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
EvalToRowMajor = RhsRowMajor && (ProductMode==(int)CacheFriendlyProduct ? LhsRowMajor : (!CanVectorizeLhs)),
RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
| EvalBeforeAssigningBit
| EvalBeforeNestingBit
| (CanVectorizeLhs || CanVectorizeRhs ? PacketAccessBit : 0),
CoeffReadCost = InnerSize == Dynamic ? Dynamic
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
*/
CanVectorizeInner = LhsRowMajor && (!RhsRowMajor) && (LhsFlags & RhsFlags & ActualPacketAccessBit)
&& (InnerSize % ei_packet_traits<Scalar>::size == 0)
};
};
template<typename LhsNested, typename RhsNested, int ProductMode> class Product : ei_no_assignment_operator,
public MatrixBase<Product<LhsNested, RhsNested, ProductMode> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
private:
typedef typename ei_traits<Product>::_LhsNested _LhsNested;
typedef typename ei_traits<Product>::_RhsNested _RhsNested;
enum {
PacketSize = ei_packet_traits<Scalar>::size,
InnerSize = ei_traits<Product>::InnerSize,
Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
CanVectorizeInner = ei_traits<Product>::CanVectorizeInner
};
typedef ei_product_coeff_impl<CanVectorizeInner ? InnerVectorization : NoVectorization,
Unroll ? InnerSize-1 : Dynamic,
_LhsNested, _RhsNested> ScalarCoeffImpl;
public:
template<typename Lhs, typename Rhs>
inline Product(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
// we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
// We still allow to mix T and complex<T>.
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Lhs::RealScalar, typename Rhs::RealScalar>::ret),
you_mixed_different_numeric_types__you_need_to_use_the_cast_method_of_MatrixBase_to_cast_numeric_types_explicitly)
ei_assert(lhs.cols() == rhs.rows()
&& "invalid matrix product"
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
/** \internal
* compute \a res += \c *this using the cache friendly product.
*/
template<typename DestDerived>
void _cacheFriendlyEvalAndAdd(DestDerived& res) const;
/** \internal
* \returns whether it is worth it to use the cache friendly product.
*/
inline bool _useCacheFriendlyProduct() const
{
return m_lhs.cols()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& ( rows()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|| cols()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD);
}
inline int rows() const { return m_lhs.rows(); }
inline int cols() const { return m_rhs.cols(); }
const Scalar coeff(int row, int col) const
{
Scalar res;
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
return res;
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
*/
const Scalar coeff(int index) const
{
Scalar res;
const int row = RowsAtCompileTime == 1 ? 0 : index;
const int col = RowsAtCompileTime == 1 ? index : 0;
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
return res;
}
template<int LoadMode>
const PacketScalar packet(int row, int col) const
{
PacketScalar res;
ei_product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
Unroll ? InnerSize-1 : Dynamic,
_LhsNested, _RhsNested, PacketScalar, LoadMode>
::run(row, col, m_lhs, m_rhs, res);
return res;
}
inline const _LhsNested& lhs() const { return m_lhs; }
inline const _RhsNested& rhs() const { return m_rhs; }
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
};
/** \returns the matrix product of \c *this and \a other.
*
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
*
* \sa lazy(), operator*=(const MatrixBase&), Cwise::operator*()
*/
template<typename Derived>
template<typename OtherDerived>
inline const typename ProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwise()*v2
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
invalid_vector_vector_product__if_you_wanted_a_dot_or_coeff_wise_product_you_must_use_the_explicit_functions)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
invalid_matrix_product__if_you_wanted_a_coeff_wise_product_you_must_use_the_explicit_function)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, invalid_matrix_product)
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}
/** replaces \c *this by \c *this * \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
inline Derived &
MatrixBase<Derived>::operator*=(const MatrixBase<OtherDerived> &other)
{
return *this = *this * other;
}
/***************************************************************************
* Normal product .coeff() implementation (with meta-unrolling)
***************************************************************************/
/**************************************
*** Scalar path - no vectorization ***
**************************************/
template<int Index, typename Lhs, typename Rhs>
struct ei_product_coeff_impl<NoVectorization, Index, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
ei_product_coeff_impl<NoVectorization, Index-1, Lhs, Rhs>::run(row, col, lhs, rhs, res);
res += lhs.coeff(row, Index) * rhs.coeff(Index, col);
}
};
template<typename Lhs, typename Rhs>
struct ei_product_coeff_impl<NoVectorization, 0, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
}
};
template<typename Lhs, typename Rhs>
struct ei_product_coeff_impl<NoVectorization, Dynamic, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar& res)
{
ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
for(int i = 1; i < lhs.cols(); i++)
res += lhs.coeff(row, i) * rhs.coeff(i, col);
}
};
// prevent buggy user code from causing an infinite recursion
template<typename Lhs, typename Rhs>
struct ei_product_coeff_impl<NoVectorization, -1, Lhs, Rhs>
{
inline static void run(int, int, const Lhs&, const Rhs&, typename Lhs::Scalar&) {}
};
/*******************************************
*** Scalar path with inner vectorization ***
*******************************************/
template<int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_coeff_vectorized_unroller
{
enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
{
ei_product_coeff_vectorized_unroller<Index-PacketSize, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, pres);
pres = ei_padd(pres, ei_pmul( lhs.template packet<Aligned>(row, Index) , rhs.template packet<Aligned>(Index, col) ));
}
};
template<typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_coeff_vectorized_unroller<0, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
{
pres = ei_pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
}
};
template<int Index, typename Lhs, typename Rhs>
struct ei_product_coeff_impl<InnerVectorization, Index, Lhs, Rhs>
{
typedef typename Lhs::PacketScalar PacketScalar;
enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
PacketScalar pres;
ei_product_coeff_vectorized_unroller<Index+1-PacketSize, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, pres);
ei_product_coeff_impl<NoVectorization,Index,Lhs,Rhs>::run(row, col, lhs, rhs, res);
res = ei_predux(pres);
}
};
template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
struct ei_product_coeff_vectorized_dyn_selector
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = ei_dot_impl<
Block<Lhs, 1, ei_traits<Lhs>::ColsAtCompileTime>,
Block<Rhs, ei_traits<Rhs>::RowsAtCompileTime, 1>,
LinearVectorization, NoUnrolling>::run(lhs.row(row), rhs.col(col));
}
};
// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
template<typename Lhs, typename Rhs, int RhsCols>
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
{
inline static void run(int /*row*/, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = ei_dot_impl<
Lhs,
Block<Rhs, ei_traits<Rhs>::RowsAtCompileTime, 1>,
LinearVectorization, NoUnrolling>::run(lhs, rhs.col(col));
}
};
template<typename Lhs, typename Rhs, int LhsRows>
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
{
inline static void run(int row, int /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = ei_dot_impl<
Block<Lhs, 1, ei_traits<Lhs>::ColsAtCompileTime>,
Rhs,
LinearVectorization, NoUnrolling>::run(lhs.row(row), rhs);
}
};
template<typename Lhs, typename Rhs>
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
{
inline static void run(int /*row*/, int /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = ei_dot_impl<
Lhs,
Rhs,
LinearVectorization, NoUnrolling>::run(lhs, rhs);
}
};
template<typename Lhs, typename Rhs>
struct ei_product_coeff_impl<InnerVectorization, Dynamic, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
}
};
/*******************
*** Packet path ***
*******************/
template<int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<RowMajor, Index, Lhs, Rhs, PacketScalar, LoadMode>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_product_packet_impl<RowMajor, Index-1, Lhs, Rhs, PacketScalar, LoadMode>::run(row, col, lhs, rhs, res);
res = ei_pmadd(ei_pset1(lhs.coeff(row, Index)), rhs.template packet<LoadMode>(Index, col), res);
}
};
template<int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<ColMajor, Index, Lhs, Rhs, PacketScalar, LoadMode>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_product_packet_impl<ColMajor, Index-1, Lhs, Rhs, PacketScalar, LoadMode>::run(row, col, lhs, rhs, res);
res = ei_pmadd(lhs.template packet<LoadMode>(row, Index), ei_pset1(rhs.coeff(Index, col)), res);
}
};
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<RowMajor, 0, Lhs, Rhs, PacketScalar, LoadMode>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
}
};
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<ColMajor, 0, Lhs, Rhs, PacketScalar, LoadMode>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(lhs.template packet<LoadMode>(row, 0), ei_pset1(rhs.coeff(0, col)));
}
};
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, PacketScalar, LoadMode>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
{
ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
for(int i = 1; i < lhs.cols(); i++)
res = ei_pmadd(ei_pset1(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
}
};
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, PacketScalar, LoadMode>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
{
ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
res = ei_pmul(lhs.template packet<LoadMode>(row, 0), ei_pset1(rhs.coeff(0, col)));
for(int i = 1; i < lhs.cols(); i++)
res = ei_pmadd(lhs.template packet<LoadMode>(row, i), ei_pset1(rhs.coeff(i, col)), res);
}
};
/***************************************************************************
* Cache friendly product callers and specific nested evaluation strategies
***************************************************************************/
template<typename Scalar, typename RhsType>
static void ei_cache_friendly_product_colmajor_times_vector(
int size, const Scalar* lhs, int lhsStride, const RhsType& rhs, Scalar* res);
template<typename Scalar, typename ResType>
static void ei_cache_friendly_product_rowmajor_times_vector(
const Scalar* lhs, int lhsStride, const Scalar* rhs, int rhsSize, ResType& res);
template<typename ProductType,
int LhsRows = ei_traits<ProductType>::RowsAtCompileTime,
int LhsOrder = int(ei_traits<ProductType>::LhsFlags)&RowMajorBit ? RowMajor : ColMajor,
int LhsHasDirectAccess = int(ei_traits<ProductType>::LhsFlags)&DirectAccessBit? HasDirectAccess : NoDirectAccess,
int RhsCols = ei_traits<ProductType>::ColsAtCompileTime,
int RhsOrder = int(ei_traits<ProductType>::RhsFlags)&RowMajorBit ? RowMajor : ColMajor,
int RhsHasDirectAccess = int(ei_traits<ProductType>::RhsFlags)&DirectAccessBit? HasDirectAccess : NoDirectAccess>
struct ei_cache_friendly_product_selector
{
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product)
{
product._cacheFriendlyEvalAndAdd(res);
}
};
// optimized colmajor * vector path
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
struct ei_cache_friendly_product_selector<ProductType,LhsRows,ColMajor,NoDirectAccess,1,RhsOrder,RhsAccess>
{
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product)
{
const int size = product.rhs().rows();
for (int k=0; k<size; ++k)
res += product.rhs().coeff(k) * product.lhs().col(k);
}
};
// optimized cache friendly colmajor * vector path for matrix with direct access flag
// NOTE this path could also be enabled for expressions if we add runtime align queries
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
struct ei_cache_friendly_product_selector<ProductType,LhsRows,ColMajor,HasDirectAccess,1,RhsOrder,RhsAccess>
{
typedef typename ProductType::Scalar Scalar;
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product)
{
enum {
EvalToRes = (ei_packet_traits<Scalar>::size==1)
||((DestDerived::Flags&ActualPacketAccessBit) && (!(DestDerived::Flags & RowMajorBit))) };
Scalar* EIGEN_RESTRICT _res;
if (EvalToRes)
_res = &res.coeffRef(0);
else
{
_res = ei_alloc_stack(Scalar,res.size());
Map<Matrix<Scalar,DestDerived::RowsAtCompileTime,1> >(_res, res.size()) = res;
}
ei_cache_friendly_product_colmajor_times_vector(res.size(),
&product.lhs().const_cast_derived().coeffRef(0,0), product.lhs().stride(),
product.rhs(), _res);
if (!EvalToRes)
{
res = Map<Matrix<Scalar,DestDerived::SizeAtCompileTime,1> >(_res, res.size());
ei_free_stack(_res, Scalar, res.size());
}
}
};
// optimized vector * rowmajor path
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,RowMajor,NoDirectAccess>
{
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product)
{
const int cols = product.lhs().cols();
for (int j=0; j<cols; ++j)
res += product.lhs().coeff(j) * product.rhs().row(j);
}
};
// optimized cache friendly vector * rowmajor path for matrix with direct access flag
// NOTE this path coul also be enabled for expressions if we add runtime align queries
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,RowMajor,HasDirectAccess>
{
typedef typename ProductType::Scalar Scalar;
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product)
{
enum {
EvalToRes = (ei_packet_traits<Scalar>::size==1)
||((DestDerived::Flags & ActualPacketAccessBit) && (DestDerived::Flags & RowMajorBit)) };
Scalar* EIGEN_RESTRICT _res;
if (EvalToRes)
_res = &res.coeffRef(0);
else
{
_res = ei_alloc_stack(Scalar, res.size());
Map<Matrix<Scalar,DestDerived::SizeAtCompileTime,1> >(_res, res.size()) = res;
}
ei_cache_friendly_product_colmajor_times_vector(res.size(),
&product.rhs().const_cast_derived().coeffRef(0,0), product.rhs().stride(),
product.lhs().transpose(), _res);
if (!EvalToRes)
{
res = Map<Matrix<Scalar,DestDerived::SizeAtCompileTime,1> >(_res, res.size());
ei_free_stack(_res, Scalar, res.size());
}
}
};
// optimized rowmajor - vector product
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
struct ei_cache_friendly_product_selector<ProductType,LhsRows,RowMajor,HasDirectAccess,1,RhsOrder,RhsAccess>
{
typedef typename ProductType::Scalar Scalar;
typedef typename ei_traits<ProductType>::_RhsNested Rhs;
enum {
UseRhsDirectly = ((ei_packet_traits<Scalar>::size==1) || (Rhs::Flags&ActualPacketAccessBit))
&& (!(Rhs::Flags & RowMajorBit)) };
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product)
{
Scalar* EIGEN_RESTRICT _rhs;
if (UseRhsDirectly)
_rhs = &product.rhs().const_cast_derived().coeffRef(0);
else
{
_rhs = ei_alloc_stack(Scalar, product.rhs().size());
Map<Matrix<Scalar,Rhs::SizeAtCompileTime,1> >(_rhs, product.rhs().size()) = product.rhs();
}
ei_cache_friendly_product_rowmajor_times_vector(&product.lhs().const_cast_derived().coeffRef(0,0), product.lhs().stride(),
_rhs, product.rhs().size(), res);
if (!UseRhsDirectly) ei_free_stack(_rhs, Scalar, product.rhs().size());
}
};
// optimized vector - colmajor product
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,ColMajor,HasDirectAccess>
{
typedef typename ProductType::Scalar Scalar;
typedef typename ei_traits<ProductType>::_LhsNested Lhs;
enum {
UseLhsDirectly = ((ei_packet_traits<Scalar>::size==1) || (Lhs::Flags&ActualPacketAccessBit))
&& (Lhs::Flags & RowMajorBit) };
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product)
{
Scalar* EIGEN_RESTRICT _lhs;
if (UseLhsDirectly)
_lhs = &product.lhs().const_cast_derived().coeffRef(0);
else
{
_lhs = ei_alloc_stack(Scalar, product.lhs().size());
Map<Matrix<Scalar,Lhs::SizeAtCompileTime,1> >(_lhs, product.lhs().size()) = product.lhs();
}
ei_cache_friendly_product_rowmajor_times_vector(&product.rhs().const_cast_derived().coeffRef(0,0), product.rhs().stride(),
_lhs, product.lhs().size(), res);
if(!UseLhsDirectly) ei_free_stack(_lhs, Scalar, product.lhs().size());
}
};
// discard this case which has to be handled by the default path
// (we keep it to be sure to hit a compilation error if this is not the case)
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
struct ei_cache_friendly_product_selector<ProductType,LhsRows,RowMajor,NoDirectAccess,1,RhsOrder,RhsAccess>
{};
// discard this case which has to be handled by the default path
// (we keep it to be sure to hit a compilation error if this is not the case)
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,ColMajor,NoDirectAccess>
{};
/** \internal */
template<typename Derived>
template<typename Lhs,typename Rhs>
inline Derived&
MatrixBase<Derived>::operator+=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other)
{
if (other._expression()._useCacheFriendlyProduct())
ei_cache_friendly_product_selector<Product<Lhs,Rhs,CacheFriendlyProduct> >::run(const_cast_derived(), other._expression());
else
lazyAssign(derived() + other._expression());
return derived();
}
template<typename Derived>
template<typename Lhs, typename Rhs>
inline Derived& MatrixBase<Derived>::lazyAssign(const Product<Lhs,Rhs,CacheFriendlyProduct>& product)
{
if (product._useCacheFriendlyProduct())
{
setZero();
ei_cache_friendly_product_selector<Product<Lhs,Rhs,CacheFriendlyProduct> >::run(const_cast_derived(), product);
}
else
{
lazyAssign<Product<Lhs,Rhs,CacheFriendlyProduct> >(product);
}
return derived();
}
template<typename T> struct ei_product_copy_rhs
{
typedef typename ei_meta_if<
(ei_traits<T>::Flags & RowMajorBit)
|| (!(ei_traits<T>::Flags & DirectAccessBit)),
typename ei_eval_to_column_major<T>::type,
const T&
>::ret type;
};
template<typename T> struct ei_product_copy_lhs
{
typedef typename ei_meta_if<
(!(int(ei_traits<T>::Flags) & DirectAccessBit)),
typename ei_eval<T>::type,
const T&
>::ret type;
};
template<typename Lhs, typename Rhs, int ProductMode>
template<typename DestDerived>
inline void Product<Lhs,Rhs,ProductMode>::_cacheFriendlyEvalAndAdd(DestDerived& res) const
{
typedef typename ei_product_copy_lhs<_LhsNested>::type LhsCopy;
typedef typename ei_unref<LhsCopy>::type _LhsCopy;
typedef typename ei_product_copy_rhs<_RhsNested>::type RhsCopy;
typedef typename ei_unref<RhsCopy>::type _RhsCopy;
LhsCopy lhs(m_lhs);
RhsCopy rhs(m_rhs);
ei_cache_friendly_product<Scalar>(
rows(), cols(), lhs.cols(),
_LhsCopy::Flags&RowMajorBit, (const Scalar*)&(lhs.const_cast_derived().coeffRef(0,0)), lhs.stride(),
_RhsCopy::Flags&RowMajorBit, (const Scalar*)&(rhs.const_cast_derived().coeffRef(0,0)), rhs.stride(),
Flags&RowMajorBit, (Scalar*)&(res.coeffRef(0,0)), res.stride()
);
}
#endif // EIGEN_PRODUCT_H
|