aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/PlainObjectBase.h
blob: e2ddbd1d522a283a5992a504f023eebc48a05670 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_DENSESTORAGEBASE_H
#define EIGEN_DENSESTORAGEBASE_H

#if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO)
# define EIGEN_INITIALIZE_COEFFS
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(Index i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
#elif defined(EIGEN_INITIALIZE_MATRICES_BY_NAN)
# define EIGEN_INITIALIZE_COEFFS
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(Index i=0;i<base().size();++i) coeffRef(i)=std::numeric_limits<Scalar>::quiet_NaN();
#else
# undef EIGEN_INITIALIZE_COEFFS
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
#endif

namespace Eigen {

namespace internal {

template<int MaxSizeAtCompileTime> struct check_rows_cols_for_overflow {
  template<typename Index>
  EIGEN_DEVICE_FUNC
  static EIGEN_ALWAYS_INLINE void run(Index, Index)
  {
  }
};

template<> struct check_rows_cols_for_overflow<Dynamic> {
  template<typename Index>
  EIGEN_DEVICE_FUNC
  static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols)
  {
    // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242
    // we assume Index is signed
    Index max_index = (std::size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed
    bool error = (rows == 0 || cols == 0) ? false
               : (rows > max_index / cols);
    if (error)
      throw_std_bad_alloc();
  }
};

template <typename Derived,
          typename OtherDerived = Derived,
          bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)>
struct conservative_resize_like_impl;

template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl;

} // end namespace internal

#ifdef EIGEN_PARSED_BY_DOXYGEN
namespace doxygen {

// This is a workaround to doxygen not being able to understand the inheritance logic
// when it is hidden by the dense_xpr_base helper struct.
// Moreover, doxygen fails to include members that are not documented in the declaration body of
// MatrixBase if we inherits MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >,
// this is why we simply inherits MatrixBase, though this does not make sense.

/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename Derived> struct dense_xpr_base_dispatcher;
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct dense_xpr_base_dispatcher<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
    : public MatrixBase {};
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct dense_xpr_base_dispatcher<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
    : public ArrayBase {};

} // namespace doxygen

/** \class PlainObjectBase
  * \ingroup Core_Module
  * \brief %Dense storage base class for matrices and arrays.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN.
  *
  * \tparam Derived is the derived type, e.g., a Matrix or Array
  *
  * \sa \ref TopicClassHierarchy
  */
template<typename Derived>
class PlainObjectBase : public doxygen::dense_xpr_base_dispatcher<Derived>
#else
template<typename Derived>
class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
#endif
{
  public:
    enum { Options = internal::traits<Derived>::Options };
    typedef typename internal::dense_xpr_base<Derived>::type Base;

    typedef typename internal::traits<Derived>::StorageKind StorageKind;
    typedef typename internal::traits<Derived>::Scalar Scalar;

    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef Derived DenseType;

    using Base::RowsAtCompileTime;
    using Base::ColsAtCompileTime;
    using Base::SizeAtCompileTime;
    using Base::MaxRowsAtCompileTime;
    using Base::MaxColsAtCompileTime;
    using Base::MaxSizeAtCompileTime;
    using Base::IsVectorAtCompileTime;
    using Base::Flags;

    typedef Eigen::Map<Derived, Unaligned>  MapType;
    typedef const Eigen::Map<const Derived, Unaligned> ConstMapType;
    typedef Eigen::Map<Derived, AlignedMax> AlignedMapType;
    typedef const Eigen::Map<const Derived, AlignedMax> ConstAlignedMapType;
    template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; };
    template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; };
    template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, AlignedMax, StrideType> type; };
    template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, AlignedMax, StrideType> type; };

  protected:
    DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;

  public:
    enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits<Derived>::Alignment>0) };
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)

    EIGEN_DEVICE_FUNC
    Base& base() { return *static_cast<Base*>(this); }
    EIGEN_DEVICE_FUNC
    const Base& base() const { return *static_cast<const Base*>(this); }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
    Index rows() const EIGEN_NOEXCEPT { return m_storage.rows(); }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR
    Index cols() const EIGEN_NOEXCEPT { return m_storage.cols(); }

    /** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,Index) const
      * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
      *
      * See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const
    {
      if(Flags & RowMajorBit)
        return m_storage.data()[colId + rowId * m_storage.cols()];
      else // column-major
        return m_storage.data()[rowId + colId * m_storage.rows()];
    }

    /** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const
      * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
      *
      * See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
    {
      return m_storage.data()[index];
    }

    /** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const
      * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
      *
      * See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const for details. */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId)
    {
      if(Flags & RowMajorBit)
        return m_storage.data()[colId + rowId * m_storage.cols()];
      else // column-major
        return m_storage.data()[rowId + colId * m_storage.rows()];
    }

    /** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const
      * provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
      *
      * See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const for details. */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
    {
      return m_storage.data()[index];
    }

    /** This is the const version of coeffRef(Index,Index) which is thus synonym of coeff(Index,Index).
      * It is provided for convenience. */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const
    {
      if(Flags & RowMajorBit)
        return m_storage.data()[colId + rowId * m_storage.cols()];
      else // column-major
        return m_storage.data()[rowId + colId * m_storage.rows()];
    }

    /** This is the const version of coeffRef(Index) which is thus synonym of coeff(Index).
      * It is provided for convenience. */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const
    {
      return m_storage.data()[index];
    }

    /** \internal */
    template<int LoadMode>
    EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
    {
      return internal::ploadt<PacketScalar, LoadMode>
               (m_storage.data() + (Flags & RowMajorBit
                                   ? colId + rowId * m_storage.cols()
                                   : rowId + colId * m_storage.rows()));
    }

    /** \internal */
    template<int LoadMode>
    EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
    {
      return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index);
    }

    /** \internal */
    template<int StoreMode>
    EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val)
    {
      internal::pstoret<Scalar, PacketScalar, StoreMode>
              (m_storage.data() + (Flags & RowMajorBit
                                   ? colId + rowId * m_storage.cols()
                                   : rowId + colId * m_storage.rows()), val);
    }

    /** \internal */
    template<int StoreMode>
    EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val)
    {
      internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val);
    }

    /** \returns a const pointer to the data array of this matrix */
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const
    { return m_storage.data(); }

    /** \returns a pointer to the data array of this matrix */
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data()
    { return m_storage.data(); }

    /** Resizes \c *this to a \a rows x \a cols matrix.
      *
      * This method is intended for dynamic-size matrices, although it is legal to call it on any
      * matrix as long as fixed dimensions are left unchanged. If you only want to change the number
      * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t).
      *
      * If the current number of coefficients of \c *this exactly matches the
      * product \a rows * \a cols, then no memory allocation is performed and
      * the current values are left unchanged. In all other cases, including
      * shrinking, the data is reallocated and all previous values are lost.
      *
      * Example: \include Matrix_resize_int_int.cpp
      * Output: \verbinclude Matrix_resize_int_int.out
      *
      * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t)
      */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
    {
      eigen_assert(   EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,rows==RowsAtCompileTime)
                   && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,cols==ColsAtCompileTime)
                   && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,rows<=MaxRowsAtCompileTime)
                   && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,cols<=MaxColsAtCompileTime)
                   && rows>=0 && cols>=0 && "Invalid sizes when resizing a matrix or array.");
      internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(rows, cols);
      #ifdef EIGEN_INITIALIZE_COEFFS
        Index size = rows*cols;
        bool size_changed = size != this->size();
        m_storage.resize(size, rows, cols);
        if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
      #else
        m_storage.resize(rows*cols, rows, cols);
      #endif
    }

    /** Resizes \c *this to a vector of length \a size
      *
      * \only_for_vectors. This method does not work for
      * partially dynamic matrices when the static dimension is anything other
      * than 1. For example it will not work with Matrix<double, 2, Dynamic>.
      *
      * Example: \include Matrix_resize_int.cpp
      * Output: \verbinclude Matrix_resize_int.out
      *
      * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t)
      */
    EIGEN_DEVICE_FUNC
    inline void resize(Index size)
    {
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
      eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0);
      #ifdef EIGEN_INITIALIZE_COEFFS
        bool size_changed = size != this->size();
      #endif
      if(RowsAtCompileTime == 1)
        m_storage.resize(size, 1, size);
      else
        m_storage.resize(size, size, 1);
      #ifdef EIGEN_INITIALIZE_COEFFS
        if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
      #endif
    }

    /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
      * as in the example below.
      *
      * Example: \include Matrix_resize_NoChange_int.cpp
      * Output: \verbinclude Matrix_resize_NoChange_int.out
      *
      * \sa resize(Index,Index)
      */
    EIGEN_DEVICE_FUNC
    inline void resize(NoChange_t, Index cols)
    {
      resize(rows(), cols);
    }

    /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
      * as in the example below.
      *
      * Example: \include Matrix_resize_int_NoChange.cpp
      * Output: \verbinclude Matrix_resize_int_NoChange.out
      *
      * \sa resize(Index,Index)
      */
    EIGEN_DEVICE_FUNC
    inline void resize(Index rows, NoChange_t)
    {
      resize(rows, cols());
    }

    /** Resizes \c *this to have the same dimensions as \a other.
      * Takes care of doing all the checking that's needed.
      *
      * Note that copying a row-vector into a vector (and conversely) is allowed.
      * The resizing, if any, is then done in the appropriate way so that row-vectors
      * remain row-vectors and vectors remain vectors.
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other)
    {
      const OtherDerived& other = _other.derived();
      internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.rows(), other.cols());
      const Index othersize = other.rows()*other.cols();
      if(RowsAtCompileTime == 1)
      {
        eigen_assert(other.rows() == 1 || other.cols() == 1);
        resize(1, othersize);
      }
      else if(ColsAtCompileTime == 1)
      {
        eigen_assert(other.rows() == 1 || other.cols() == 1);
        resize(othersize, 1);
      }
      else resize(other.rows(), other.cols());
    }

    /** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
      *
      * The method is intended for matrices of dynamic size. If you only want to change the number
      * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
      * conservativeResize(Index, NoChange_t).
      *
      * Matrices are resized relative to the top-left element. In case values need to be
      * appended to the matrix they will be uninitialized.
      */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols)
    {
      internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols);
    }

    /** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
      *
      * As opposed to conservativeResize(Index rows, Index cols), this version leaves
      * the number of columns unchanged.
      *
      * In case the matrix is growing, new rows will be uninitialized.
      */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t)
    {
      // Note: see the comment in conservativeResize(Index,Index)
      conservativeResize(rows, cols());
    }

    /** Resizes the matrix to \a rows x \a cols while leaving old values untouched.
      *
      * As opposed to conservativeResize(Index rows, Index cols), this version leaves
      * the number of rows unchanged.
      *
      * In case the matrix is growing, new columns will be uninitialized.
      */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols)
    {
      // Note: see the comment in conservativeResize(Index,Index)
      conservativeResize(rows(), cols);
    }

    /** Resizes the vector to \a size while retaining old values.
      *
      * \only_for_vectors. This method does not work for
      * partially dynamic matrices when the static dimension is anything other
      * than 1. For example it will not work with Matrix<double, 2, Dynamic>.
      *
      * When values are appended, they will be uninitialized.
      */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void conservativeResize(Index size)
    {
      internal::conservative_resize_like_impl<Derived>::run(*this, size);
    }

    /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched.
      *
      * The method is intended for matrices of dynamic size. If you only want to change the number
      * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or
      * conservativeResize(Index, NoChange_t).
      *
      * Matrices are resized relative to the top-left element. In case values need to be
      * appended to the matrix they will copied from \c other.
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
    {
      internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
    }

    /** This is a special case of the templated operator=. Its purpose is to
      * prevent a default operator= from hiding the templated operator=.
      */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other)
    {
      return _set(other);
    }

    /** \sa MatrixBase::lazyAssign() */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other)
    {
      _resize_to_match(other);
      return Base::lazyAssign(other.derived());
    }

    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
    {
      resize(func.rows(), func.cols());
      return Base::operator=(func);
    }

    // Prevent user from trying to instantiate PlainObjectBase objects
    // by making all its constructor protected. See bug 1074.
  protected:

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE PlainObjectBase() : m_storage()
    {
//       _check_template_params();
//       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    }

#ifndef EIGEN_PARSED_BY_DOXYGEN
    // FIXME is it still needed ?
    /** \internal */
    EIGEN_DEVICE_FUNC
    explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert)
      : m_storage(internal::constructor_without_unaligned_array_assert())
    {
//       _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    }
#endif

#if EIGEN_HAS_RVALUE_REFERENCES
    EIGEN_DEVICE_FUNC
    PlainObjectBase(PlainObjectBase&& other) EIGEN_NOEXCEPT
      : m_storage( std::move(other.m_storage) )
    {
    }

    EIGEN_DEVICE_FUNC
    PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT
    {
      _check_template_params();
      m_storage = std::move(other.m_storage);
      return *this;
    }
#endif

    /** Copy constructor */
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other)
      : Base(), m_storage(other.m_storage) { }
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols)
      : m_storage(size, rows, cols)
    {
//       _check_template_params();
//       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    }

    #if EIGEN_HAS_CXX11
    /** \brief Construct a row of column vector with fixed size from an arbitrary number of coefficients. \cpp11
      *
      * \only_for_vectors
      *
      * This constructor is for 1D array or vectors with more than 4 coefficients.
      * There exists C++98 analogue constructors for fixed-size array/vector having 1, 2, 3, or 4 coefficients.
      *
      * \warning To construct a column (resp. row) vector of fixed length, the number of values passed to this
      * constructor must match the the fixed number of rows (resp. columns) of \c *this.
      */
    template <typename... ArgTypes>
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    PlainObjectBase(const Scalar& a0, const Scalar& a1, const Scalar& a2,  const Scalar& a3, const ArgTypes&... args)
      : m_storage()
    {
      _check_template_params();
      EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, sizeof...(args) + 4);
      m_storage.data()[0] = a0;
      m_storage.data()[1] = a1;
      m_storage.data()[2] = a2;
      m_storage.data()[3] = a3;
      Index i = 4;
      auto x = {(m_storage.data()[i++] = args, 0)...};
      static_cast<void>(x);
    }

    /** \brief Constructs a Matrix or Array and initializes it by elements given by an initializer list of initializer
      * lists \cpp11
      */
    EIGEN_DEVICE_FUNC
    explicit EIGEN_STRONG_INLINE PlainObjectBase(const std::initializer_list<std::initializer_list<Scalar>>& list)
      : m_storage()
    {
      _check_template_params();

      size_t list_size = 0;
      if (list.begin() != list.end()) {
        list_size = list.begin()->size();
      }

      // This is to allow syntax like VectorXi {{1, 2, 3, 4}}
      if (ColsAtCompileTime == 1 && list.size() == 1) {
        eigen_assert(list_size == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic);
        resize(list_size, ColsAtCompileTime);
        std::copy(list.begin()->begin(), list.begin()->end(), m_storage.data());
      } else {
        eigen_assert(list.size() == static_cast<size_t>(RowsAtCompileTime) || RowsAtCompileTime == Dynamic);
        eigen_assert(list_size == static_cast<size_t>(ColsAtCompileTime) || ColsAtCompileTime == Dynamic);
        resize(list.size(), list_size);

        Index row_index = 0;
        for (const std::initializer_list<Scalar>& row : list) {
          eigen_assert(list_size == row.size());
          Index col_index = 0;
          for (const Scalar& e : row) {
            coeffRef(row_index, col_index) = e;
            ++col_index;
          }
          ++row_index;
        }
      }
    }
    #endif  // end EIGEN_HAS_CXX11

    /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived> &other)
      : m_storage()
    {
      _check_template_params();
      resizeLike(other);
      _set_noalias(other);
    }

    /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
      : m_storage()
    {
      _check_template_params();
      resizeLike(other);
      *this = other.derived();
    }
    /** \brief Copy constructor with in-place evaluation */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue<OtherDerived>& other)
    {
      _check_template_params();
      // FIXME this does not automatically transpose vectors if necessary
      resize(other.rows(), other.cols());
      other.evalTo(this->derived());
    }

  public:

    /** \brief Copies the generic expression \a other into *this.
      * \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
    {
      _resize_to_match(other);
      Base::operator=(other.derived());
      return this->derived();
    }

    /** \name Map
      * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
      * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
      * \a data pointers.
      *
      * Here is an example using strides:
      * \include Matrix_Map_stride.cpp
      * Output: \verbinclude Matrix_Map_stride.out
      *
      * \see class Map
      */
    //@{
    static inline ConstMapType Map(const Scalar* data)
    { return ConstMapType(data); }
    static inline MapType Map(Scalar* data)
    { return MapType(data); }
    static inline ConstMapType Map(const Scalar* data, Index size)
    { return ConstMapType(data, size); }
    static inline MapType Map(Scalar* data, Index size)
    { return MapType(data, size); }
    static inline ConstMapType Map(const Scalar* data, Index rows, Index cols)
    { return ConstMapType(data, rows, cols); }
    static inline MapType Map(Scalar* data, Index rows, Index cols)
    { return MapType(data, rows, cols); }

    static inline ConstAlignedMapType MapAligned(const Scalar* data)
    { return ConstAlignedMapType(data); }
    static inline AlignedMapType MapAligned(Scalar* data)
    { return AlignedMapType(data); }
    static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size)
    { return ConstAlignedMapType(data, size); }
    static inline AlignedMapType MapAligned(Scalar* data, Index size)
    { return AlignedMapType(data, size); }
    static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols)
    { return ConstAlignedMapType(data, rows, cols); }
    static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols)
    { return AlignedMapType(data, rows, cols); }

    template<int Outer, int Inner>
    static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, const Stride<Outer, Inner>& stride)
    { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, stride); }
    template<int Outer, int Inner>
    static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, const Stride<Outer, Inner>& stride)
    { return typename StridedMapType<Stride<Outer, Inner> >::type(data, stride); }
    template<int Outer, int Inner>
    static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
    { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, size, stride); }
    template<int Outer, int Inner>
    static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
    { return typename StridedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
    template<int Outer, int Inner>
    static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
    { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
    template<int Outer, int Inner>
    static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
    { return typename StridedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }

    template<int Outer, int Inner>
    static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, const Stride<Outer, Inner>& stride)
    { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
    template<int Outer, int Inner>
    static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, const Stride<Outer, Inner>& stride)
    { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, stride); }
    template<int Outer, int Inner>
    static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index size, const Stride<Outer, Inner>& stride)
    { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
    template<int Outer, int Inner>
    static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index size, const Stride<Outer, Inner>& stride)
    { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); }
    template<int Outer, int Inner>
    static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
    { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
    template<int Outer, int Inner>
    static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride)
    { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); }
    //@}

    using Base::setConstant;
    EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& val);
    EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, Index cols, const Scalar& val);
    EIGEN_DEVICE_FUNC Derived& setConstant(NoChange_t, Index cols, const Scalar& val);
    EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, NoChange_t, const Scalar& val);

    using Base::setZero;
    EIGEN_DEVICE_FUNC Derived& setZero(Index size);
    EIGEN_DEVICE_FUNC Derived& setZero(Index rows, Index cols);
    EIGEN_DEVICE_FUNC Derived& setZero(NoChange_t, Index cols);
    EIGEN_DEVICE_FUNC Derived& setZero(Index rows, NoChange_t);

    using Base::setOnes;
    EIGEN_DEVICE_FUNC Derived& setOnes(Index size);
    EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, Index cols);
    EIGEN_DEVICE_FUNC Derived& setOnes(NoChange_t, Index cols);
    EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, NoChange_t);

    using Base::setRandom;
    Derived& setRandom(Index size);
    Derived& setRandom(Index rows, Index cols);
    Derived& setRandom(NoChange_t, Index cols);
    Derived& setRandom(Index rows, NoChange_t);

    #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN
    #include EIGEN_PLAINOBJECTBASE_PLUGIN
    #endif

  protected:
    /** \internal Resizes *this in preparation for assigning \a other to it.
      * Takes care of doing all the checking that's needed.
      *
      * Note that copying a row-vector into a vector (and conversely) is allowed.
      * The resizing, if any, is then done in the appropriate way so that row-vectors
      * remain row-vectors and vectors remain vectors.
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other)
    {
      #ifdef EIGEN_NO_AUTOMATIC_RESIZING
      eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
                 : (rows() == other.rows() && cols() == other.cols())))
        && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
      EIGEN_ONLY_USED_FOR_DEBUG(other);
      #else
      resizeLike(other);
      #endif
    }

    /**
      * \brief Copies the value of the expression \a other into \c *this with automatic resizing.
      *
      * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
      * it will be initialized.
      *
      * Note that copying a row-vector into a vector (and conversely) is allowed.
      * The resizing, if any, is then done in the appropriate way so that row-vectors
      * remain row-vectors and vectors remain vectors.
      *
      * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
      *
      * \internal
      */
    // aliasing is dealt once in internal::call_assignment
    // so at this stage we have to assume aliasing... and resising has to be done later.
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
    {
      internal::call_assignment(this->derived(), other.derived());
      return this->derived();
    }

    /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
      * is the case when creating a new matrix) so one can enforce lazy evaluation.
      *
      * \sa operator=(const MatrixBase<OtherDerived>&), _set()
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
    {
      // I don't think we need this resize call since the lazyAssign will anyways resize
      // and lazyAssign will be called by the assign selector.
      //_resize_to_match(other);
      // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
      // it wouldn't allow to copy a row-vector into a column-vector.
      internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
      return this->derived();
    }

    template<typename T0, typename T1>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
    {
      const bool t0_is_integer_alike = internal::is_valid_index_type<T0>::value;
      const bool t1_is_integer_alike = internal::is_valid_index_type<T1>::value;
      EIGEN_STATIC_ASSERT(t0_is_integer_alike &&
                          t1_is_integer_alike,
                          FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
      resize(rows,cols);
    }

    template<typename T0, typename T1>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
    {
      EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
      m_storage.data()[0] = Scalar(val0);
      m_storage.data()[1] = Scalar(val1);
    }

    template<typename T0, typename T1>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1,
                                    typename internal::enable_if<    (!internal::is_same<Index,Scalar>::value)
                                                                  && (internal::is_same<T0,Index>::value)
                                                                  && (internal::is_same<T1,Index>::value)
                                                                  && Base::SizeAtCompileTime==2,T1>::type* = 0)
    {
      EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
      m_storage.data()[0] = Scalar(val0);
      m_storage.data()[1] = Scalar(val1);
    }

    // The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array,
    // then the argument is meant to be the size of the object.
    template<typename T>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if<    (Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value)
                                                                              && ((!internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>::type* = 0)
    {
      // NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument.
      const bool is_integer_alike = internal::is_valid_index_type<T>::value;
      EIGEN_UNUSED_VARIABLE(is_integer_alike);
      EIGEN_STATIC_ASSERT(is_integer_alike,
                          FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
      resize(size);
    }

    // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitly converted)
    template<typename T>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>::type* = 0)
    {
      EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
      m_storage.data()[0] = val0;
    }

    // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type match the index type)
    template<typename T>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const Index& val0,
                                    typename internal::enable_if<    (!internal::is_same<Index,Scalar>::value)
                                                                  && (internal::is_same<Index,T>::value)
                                                                  && Base::SizeAtCompileTime==1
                                                                  && internal::is_convertible<T, Scalar>::value,T*>::type* = 0)
    {
      EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
      m_storage.data()[0] = Scalar(val0);
    }

    // Initialize a fixed size matrix from a pointer to raw data
    template<typename T>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const Scalar* data){
      this->_set_noalias(ConstMapType(data));
    }

    // Initialize an arbitrary matrix from a dense expression
    template<typename T, typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other){
      this->_set_noalias(other);
    }

    // Initialize an arbitrary matrix from an object convertible to the Derived type.
    template<typename T>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const Derived& other){
      this->_set_noalias(other);
    }

    // Initialize an arbitrary matrix from a generic Eigen expression
    template<typename T, typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other){
      this->derived() = other;
    }

    template<typename T, typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const ReturnByValue<OtherDerived>& other)
    {
      resize(other.rows(), other.cols());
      other.evalTo(this->derived());
    }

    template<typename T, typename OtherDerived, int ColsAtCompileTime>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
    {
      this->derived() = r;
    }

    // For fixed-size Array<Scalar,...>
    template<typename T>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const Scalar& val0,
                                    typename internal::enable_if<    Base::SizeAtCompileTime!=Dynamic
                                                                  && Base::SizeAtCompileTime!=1
                                                                  && internal::is_convertible<T, Scalar>::value
                                                                  && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T>::type* = 0)
    {
      Base::setConstant(val0);
    }

    // For fixed-size Array<Index,...>
    template<typename T>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE void _init1(const Index& val0,
                                    typename internal::enable_if<    (!internal::is_same<Index,Scalar>::value)
                                                                  && (internal::is_same<Index,T>::value)
                                                                  && Base::SizeAtCompileTime!=Dynamic
                                                                  && Base::SizeAtCompileTime!=1
                                                                  && internal::is_convertible<T, Scalar>::value
                                                                  && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T*>::type* = 0)
    {
      Base::setConstant(val0);
    }

    template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
    friend struct internal::matrix_swap_impl;

  public:

#ifndef EIGEN_PARSED_BY_DOXYGEN
    /** \internal
      * \brief Override DenseBase::swap() since for dynamic-sized matrices
      * of same type it is enough to swap the data pointers.
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    void swap(DenseBase<OtherDerived> & other)
    {
      enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic };
      internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.derived());
    }

    /** \internal
      * \brief const version forwarded to DenseBase::swap
      */
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
    void swap(DenseBase<OtherDerived> const & other)
    { Base::swap(other.derived()); }

    EIGEN_DEVICE_FUNC
    static EIGEN_STRONG_INLINE void _check_template_params()
    {
      EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (int(Options)&RowMajor)==RowMajor)
                        && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (int(Options)&RowMajor)==0)
                        && ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0))
                        && ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0))
                        && ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0))
                        && ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0))
                        && (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic)
                        && (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic)
                        && (Options & (DontAlign|RowMajor)) == Options),
        INVALID_MATRIX_TEMPLATE_PARAMETERS)
    }

    enum { IsPlainObjectBase = 1 };
#endif
  public:
    // These apparently need to be down here for nvcc+icc to prevent duplicate
    // Map symbol.
    template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map;
    friend class Eigen::Map<Derived, Unaligned>;
    friend class Eigen::Map<const Derived, Unaligned>;
#if EIGEN_MAX_ALIGN_BYTES>0
    // for EIGEN_MAX_ALIGN_BYTES==0, AlignedMax==Unaligned, and many compilers generate warnings for friend-ing a class twice.
    friend class Eigen::Map<Derived, AlignedMax>;
    friend class Eigen::Map<const Derived, AlignedMax>;
#endif
};

namespace internal {

template <typename Derived, typename OtherDerived, bool IsVector>
struct conservative_resize_like_impl
{
  #if EIGEN_HAS_TYPE_TRAITS
  static const bool IsRelocatable = std::is_trivially_copyable<typename Derived::Scalar>::value;
  #else
  static const bool IsRelocatable = !NumTraits<typename Derived::Scalar>::RequireInitialization;
  #endif
  static void run(DenseBase<Derived>& _this, Index rows, Index cols)
  {
    if (_this.rows() == rows && _this.cols() == cols) return;
    EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)

    if ( IsRelocatable
          && (( Derived::IsRowMajor && _this.cols() == cols) ||  // row-major and we change only the number of rows
              (!Derived::IsRowMajor && _this.rows() == rows) ))  // column-major and we change only the number of columns
    {
      internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime>::run(rows, cols);
      _this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
    }
    else
    {
      // The storage order does not allow us to use reallocation.
      Derived tmp(rows,cols);
      const Index common_rows = numext::mini(rows, _this.rows());
      const Index common_cols = numext::mini(cols, _this.cols());
      tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
      _this.derived().swap(tmp);
    }
  }

  static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
  {
    if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;

    // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index),
    // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the
    // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or
    // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like
    // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good.
    EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived)
    EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived)

    if ( IsRelocatable &&
          (( Derived::IsRowMajor && _this.cols() == other.cols()) ||  // row-major and we change only the number of rows
           (!Derived::IsRowMajor && _this.rows() == other.rows()) ))  // column-major and we change only the number of columns
    {
      const Index new_rows = other.rows() - _this.rows();
      const Index new_cols = other.cols() - _this.cols();
      _this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols());
      if (new_rows>0)
        _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows);
      else if (new_cols>0)
        _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols);
    }
    else
    {
      // The storage order does not allow us to use reallocation.
      Derived tmp(other);
      const Index common_rows = numext::mini(tmp.rows(), _this.rows());
      const Index common_cols = numext::mini(tmp.cols(), _this.cols());
      tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
      _this.derived().swap(tmp);
    }
  }
};

// Here, the specialization for vectors inherits from the general matrix case
// to allow calling .conservativeResize(rows,cols) on vectors.
template <typename Derived, typename OtherDerived>
struct conservative_resize_like_impl<Derived,OtherDerived,true>
  : conservative_resize_like_impl<Derived,OtherDerived,false>
{
  typedef conservative_resize_like_impl<Derived,OtherDerived,false> Base;
  using Base::run;
  using Base::IsRelocatable;

  static void run(DenseBase<Derived>& _this, Index size)
  {
    const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
    const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1;
    if(IsRelocatable)
      _this.derived().m_storage.conservativeResize(size,new_rows,new_cols);
    else
      Base::run(_this.derived(), new_rows, new_cols);
  }

  static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other)
  {
    if (_this.rows() == other.rows() && _this.cols() == other.cols()) return;

    const Index num_new_elements = other.size() - _this.size();

    const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows();
    const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1;
    if(IsRelocatable)
      _this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols);
    else
      Base::run(_this.derived(), new_rows, new_cols);

    if (num_new_elements > 0)
      _this.tail(num_new_elements) = other.tail(num_new_elements);
  }
};

template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
struct matrix_swap_impl
{
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE void run(MatrixTypeA& a, MatrixTypeB& b)
  {
    a.base().swap(b);
  }
};

template<typename MatrixTypeA, typename MatrixTypeB>
struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
{
  EIGEN_DEVICE_FUNC
  static inline void run(MatrixTypeA& a, MatrixTypeB& b)
  {
    static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_DENSESTORAGEBASE_H