aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/PermutationMatrix.h
blob: b1fb455b98c236588e5069a7fa18c3d64eeb71c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PERMUTATIONMATRIX_H
#define EIGEN_PERMUTATIONMATRIX_H

namespace Eigen { 

namespace internal {

enum PermPermProduct_t {PermPermProduct};

} // end namespace internal

/** \class PermutationBase
  * \ingroup Core_Module
  *
  * \brief Base class for permutations
  *
  * \tparam Derived the derived class
  *
  * This class is the base class for all expressions representing a permutation matrix,
  * internally stored as a vector of integers.
  * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
  * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
  *  \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
  * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have:
  *  \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f]
  *
  * Permutation matrices are square and invertible.
  *
  * Notice that in addition to the member functions and operators listed here, there also are non-member
  * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase)
  * on either side.
  *
  * \sa class PermutationMatrix, class PermutationWrapper
  */
template<typename Derived>
class PermutationBase : public EigenBase<Derived>
{
    typedef internal::traits<Derived> Traits;
    typedef EigenBase<Derived> Base;
  public:

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    typedef typename Traits::IndicesType IndicesType;
    enum {
      Flags = Traits::Flags,
      RowsAtCompileTime = Traits::RowsAtCompileTime,
      ColsAtCompileTime = Traits::ColsAtCompileTime,
      MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
    };
    typedef typename Traits::StorageIndex StorageIndex;
    typedef Matrix<StorageIndex,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
            DenseMatrixType;
    typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,StorageIndex>
            PlainPermutationType;
    typedef PlainPermutationType PlainObject;
    using Base::derived;
    typedef Inverse<Derived> InverseReturnType;
    typedef void Scalar;
    #endif

    /** Copies the other permutation into *this */
    template<typename OtherDerived>
    Derived& operator=(const PermutationBase<OtherDerived>& other)
    {
      indices() = other.indices();
      return derived();
    }

    /** Assignment from the Transpositions \a tr */
    template<typename OtherDerived>
    Derived& operator=(const TranspositionsBase<OtherDerived>& tr)
    {
      setIdentity(tr.size());
      for(Index k=size()-1; k>=0; --k)
        applyTranspositionOnTheRight(k,tr.coeff(k));
      return derived();
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** This is a special case of the templated operator=. Its purpose is to
      * prevent a default operator= from hiding the templated operator=.
      */
    Derived& operator=(const PermutationBase& other)
    {
      indices() = other.indices();
      return derived();
    }
    #endif

    /** \returns the number of rows */
    inline Index rows() const { return Index(indices().size()); }

    /** \returns the number of columns */
    inline Index cols() const { return Index(indices().size()); }

    /** \returns the size of a side of the respective square matrix, i.e., the number of indices */
    inline Index size() const { return Index(indices().size()); }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename DenseDerived>
    void evalTo(MatrixBase<DenseDerived>& other) const
    {
      other.setZero();
      for (Index i=0; i<rows(); ++i)
        other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1);
    }
    #endif

    /** \returns a Matrix object initialized from this permutation matrix. Notice that it
      * is inefficient to return this Matrix object by value. For efficiency, favor using
      * the Matrix constructor taking EigenBase objects.
      */
    DenseMatrixType toDenseMatrix() const
    {
      return derived();
    }

    /** const version of indices(). */
    const IndicesType& indices() const { return derived().indices(); }
    /** \returns a reference to the stored array representing the permutation. */
    IndicesType& indices() { return derived().indices(); }

    /** Resizes to given size.
      */
    inline void resize(Index newSize)
    {
      indices().resize(newSize);
    }

    /** Sets *this to be the identity permutation matrix */
    void setIdentity()
    {
      StorageIndex n = StorageIndex(size());
      for(StorageIndex i = 0; i < n; ++i)
        indices().coeffRef(i) = i;
    }

    /** Sets *this to be the identity permutation matrix of given size.
      */
    void setIdentity(Index newSize)
    {
      resize(newSize);
      setIdentity();
    }

    /** Multiplies *this by the transposition \f$(ij)\f$ on the left.
      *
      * \returns a reference to *this.
      *
      * \warning This is much slower than applyTranspositionOnTheRight(Index,Index):
      * this has linear complexity and requires a lot of branching.
      *
      * \sa applyTranspositionOnTheRight(Index,Index)
      */
    Derived& applyTranspositionOnTheLeft(Index i, Index j)
    {
      eigen_assert(i>=0 && j>=0 && i<size() && j<size());
      for(Index k = 0; k < size(); ++k)
      {
        if(indices().coeff(k) == i) indices().coeffRef(k) = StorageIndex(j);
        else if(indices().coeff(k) == j) indices().coeffRef(k) = StorageIndex(i);
      }
      return derived();
    }

    /** Multiplies *this by the transposition \f$(ij)\f$ on the right.
      *
      * \returns a reference to *this.
      *
      * This is a fast operation, it only consists in swapping two indices.
      *
      * \sa applyTranspositionOnTheLeft(Index,Index)
      */
    Derived& applyTranspositionOnTheRight(Index i, Index j)
    {
      eigen_assert(i>=0 && j>=0 && i<size() && j<size());
      std::swap(indices().coeffRef(i), indices().coeffRef(j));
      return derived();
    }

    /** \returns the inverse permutation matrix.
      *
      * \note \blank \note_try_to_help_rvo
      */
    inline InverseReturnType inverse() const
    { return InverseReturnType(derived()); }
    /** \returns the tranpose permutation matrix.
      *
      * \note \blank \note_try_to_help_rvo
      */
    inline InverseReturnType transpose() const
    { return InverseReturnType(derived()); }

    /**** multiplication helpers to hopefully get RVO ****/

  
#ifndef EIGEN_PARSED_BY_DOXYGEN
  protected:
    template<typename OtherDerived>
    void assignTranspose(const PermutationBase<OtherDerived>& other)
    {
      for (Index i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
    }
    template<typename Lhs,typename Rhs>
    void assignProduct(const Lhs& lhs, const Rhs& rhs)
    {
      eigen_assert(lhs.cols() == rhs.rows());
      for (Index i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
    }
#endif

  public:

    /** \returns the product permutation matrix.
      *
      * \note \blank \note_try_to_help_rvo
      */
    template<typename Other>
    inline PlainPermutationType operator*(const PermutationBase<Other>& other) const
    { return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); }

    /** \returns the product of a permutation with another inverse permutation.
      *
      * \note \blank \note_try_to_help_rvo
      */
    template<typename Other>
    inline PlainPermutationType operator*(const InverseImpl<Other,PermutationStorage>& other) const
    { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); }

    /** \returns the product of an inverse permutation with another permutation.
      *
      * \note \blank \note_try_to_help_rvo
      */
    template<typename Other> friend
    inline PlainPermutationType operator*(const InverseImpl<Other, PermutationStorage>& other, const PermutationBase& perm)
    { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
    
    /** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation.
      *
      * This function is O(\c n) procedure allocating a buffer of \c n booleans.
      */
    Index determinant() const
    {
      Index res = 1;
      Index n = size();
      Matrix<bool,RowsAtCompileTime,1,0,MaxRowsAtCompileTime> mask(n);
      mask.fill(false);
      Index r = 0;
      while(r < n)
      {
        // search for the next seed
        while(r<n && mask[r]) r++;
        if(r>=n)
          break;
        // we got one, let's follow it until we are back to the seed
        Index k0 = r++;
        mask.coeffRef(k0) = true;
        for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k))
        {
          mask.coeffRef(k) = true;
          res = -res;
        }
      }
      return res;
    }

  protected:

};

namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
 : traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
  typedef PermutationStorage StorageKind;
  typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
  typedef _StorageIndex StorageIndex;
  typedef void Scalar;
};
}

/** \class PermutationMatrix
  * \ingroup Core_Module
  *
  * \brief Permutation matrix
  *
  * \tparam SizeAtCompileTime the number of rows/cols, or Dynamic
  * \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
  * \tparam _StorageIndex the integer type of the indices
  *
  * This class represents a permutation matrix, internally stored as a vector of integers.
  *
  * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
  */
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
{
    typedef PermutationBase<PermutationMatrix> Base;
    typedef internal::traits<PermutationMatrix> Traits;
  public:

    typedef const PermutationMatrix& Nested;

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    typedef typename Traits::IndicesType IndicesType;
    typedef typename Traits::StorageIndex StorageIndex;
    #endif

    inline PermutationMatrix()
    {}

    /** Constructs an uninitialized permutation matrix of given size.
      */
    explicit inline PermutationMatrix(Index size) : m_indices(size)
    {
      eigen_internal_assert(size <= NumTraits<StorageIndex>::highest());
    }

    /** Copy constructor. */
    template<typename OtherDerived>
    inline PermutationMatrix(const PermutationBase<OtherDerived>& other)
      : m_indices(other.indices()) {}

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** Standard copy constructor. Defined only to prevent a default copy constructor
      * from hiding the other templated constructor */
    inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
    #endif

    /** Generic constructor from expression of the indices. The indices
      * array has the meaning that the permutations sends each integer i to indices[i].
      *
      * \warning It is your responsibility to check that the indices array that you passes actually
      * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the
      * array's size.
      */
    template<typename Other>
    explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices)
    {}

    /** Convert the Transpositions \a tr to a permutation matrix */
    template<typename Other>
    explicit PermutationMatrix(const TranspositionsBase<Other>& tr)
      : m_indices(tr.size())
    {
      *this = tr;
    }

    /** Copies the other permutation into *this */
    template<typename Other>
    PermutationMatrix& operator=(const PermutationBase<Other>& other)
    {
      m_indices = other.indices();
      return *this;
    }

    /** Assignment from the Transpositions \a tr */
    template<typename Other>
    PermutationMatrix& operator=(const TranspositionsBase<Other>& tr)
    {
      return Base::operator=(tr.derived());
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** This is a special case of the templated operator=. Its purpose is to
      * prevent a default operator= from hiding the templated operator=.
      */
    PermutationMatrix& operator=(const PermutationMatrix& other)
    {
      m_indices = other.m_indices;
      return *this;
    }
    #endif

    /** const version of indices(). */
    const IndicesType& indices() const { return m_indices; }
    /** \returns a reference to the stored array representing the permutation. */
    IndicesType& indices() { return m_indices; }


    /**** multiplication helpers to hopefully get RVO ****/

#ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename Other>
    PermutationMatrix(const InverseImpl<Other,PermutationStorage>& other)
      : m_indices(other.derived().nestedExpression().size())
    {
      eigen_internal_assert(m_indices.size() <= NumTraits<StorageIndex>::highest());
      StorageIndex end = StorageIndex(m_indices.size());
      for (StorageIndex i=0; i<end;++i)
        m_indices.coeffRef(other.derived().nestedExpression().indices().coeff(i)) = i;
    }
    template<typename Lhs,typename Rhs>
    PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs)
      : m_indices(lhs.indices().size())
    {
      Base::assignProduct(lhs,rhs);
    }
#endif

  protected:

    IndicesType m_indices;
};


namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
 : traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
  typedef PermutationStorage StorageKind;
  typedef Map<const Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
  typedef _StorageIndex StorageIndex;
  typedef void Scalar;
};
}

template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess>
  : public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
{
    typedef PermutationBase<Map> Base;
    typedef internal::traits<Map> Traits;
  public:

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    typedef typename Traits::IndicesType IndicesType;
    typedef typename IndicesType::Scalar StorageIndex;
    #endif

    inline Map(const StorageIndex* indicesPtr)
      : m_indices(indicesPtr)
    {}

    inline Map(const StorageIndex* indicesPtr, Index size)
      : m_indices(indicesPtr,size)
    {}

    /** Copies the other permutation into *this */
    template<typename Other>
    Map& operator=(const PermutationBase<Other>& other)
    { return Base::operator=(other.derived()); }

    /** Assignment from the Transpositions \a tr */
    template<typename Other>
    Map& operator=(const TranspositionsBase<Other>& tr)
    { return Base::operator=(tr.derived()); }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** This is a special case of the templated operator=. Its purpose is to
      * prevent a default operator= from hiding the templated operator=.
      */
    Map& operator=(const Map& other)
    {
      m_indices = other.m_indices;
      return *this;
    }
    #endif

    /** const version of indices(). */
    const IndicesType& indices() const { return m_indices; }
    /** \returns a reference to the stored array representing the permutation. */
    IndicesType& indices() { return m_indices; }

  protected:

    IndicesType m_indices;
};

template<typename _IndicesType> class TranspositionsWrapper;
namespace internal {
template<typename _IndicesType>
struct traits<PermutationWrapper<_IndicesType> >
{
  typedef PermutationStorage StorageKind;
  typedef void Scalar;
  typedef typename _IndicesType::Scalar StorageIndex;
  typedef _IndicesType IndicesType;
  enum {
    RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
    ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
    MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
    MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
    Flags = 0
  };
};
}

/** \class PermutationWrapper
  * \ingroup Core_Module
  *
  * \brief Class to view a vector of integers as a permutation matrix
  *
  * \tparam _IndicesType the type of the vector of integer (can be any compatible expression)
  *
  * This class allows to view any vector expression of integers as a permutation matrix.
  *
  * \sa class PermutationBase, class PermutationMatrix
  */
template<typename _IndicesType>
class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
{
    typedef PermutationBase<PermutationWrapper> Base;
    typedef internal::traits<PermutationWrapper> Traits;
  public:

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    typedef typename Traits::IndicesType IndicesType;
    #endif

    inline PermutationWrapper(const IndicesType& indices)
      : m_indices(indices)
    {}

    /** const version of indices(). */
    const typename internal::remove_all<typename IndicesType::Nested>::type&
    indices() const { return m_indices; }

  protected:

    typename IndicesType::Nested m_indices;
};


/** \returns the matrix with the permutation applied to the columns.
  */
template<typename MatrixDerived, typename PermutationDerived>
EIGEN_DEVICE_FUNC
const Product<MatrixDerived, PermutationDerived, AliasFreeProduct>
operator*(const MatrixBase<MatrixDerived> &matrix,
          const PermutationBase<PermutationDerived>& permutation)
{
  return Product<MatrixDerived, PermutationDerived, AliasFreeProduct>
            (matrix.derived(), permutation.derived());
}

/** \returns the matrix with the permutation applied to the rows.
  */
template<typename PermutationDerived, typename MatrixDerived>
EIGEN_DEVICE_FUNC
const Product<PermutationDerived, MatrixDerived, AliasFreeProduct>
operator*(const PermutationBase<PermutationDerived> &permutation,
          const MatrixBase<MatrixDerived>& matrix)
{
  return Product<PermutationDerived, MatrixDerived, AliasFreeProduct>
            (permutation.derived(), matrix.derived());
}


template<typename PermutationType>
class InverseImpl<PermutationType, PermutationStorage>
  : public EigenBase<Inverse<PermutationType> >
{
    typedef typename PermutationType::PlainPermutationType PlainPermutationType;
    typedef internal::traits<PermutationType> PermTraits;
  protected:
    InverseImpl() {}
  public:
    typedef Inverse<PermutationType> InverseType;
    using EigenBase<Inverse<PermutationType> >::derived;

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    typedef typename PermutationType::DenseMatrixType DenseMatrixType;
    enum {
      RowsAtCompileTime = PermTraits::RowsAtCompileTime,
      ColsAtCompileTime = PermTraits::ColsAtCompileTime,
      MaxRowsAtCompileTime = PermTraits::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = PermTraits::MaxColsAtCompileTime
    };
    #endif

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename DenseDerived>
    void evalTo(MatrixBase<DenseDerived>& other) const
    {
      other.setZero();
      for (Index i=0; i<derived().rows();++i)
        other.coeffRef(i, derived().nestedExpression().indices().coeff(i)) = typename DenseDerived::Scalar(1);
    }
    #endif

    /** \return the equivalent permutation matrix */
    PlainPermutationType eval() const { return derived(); }

    DenseMatrixType toDenseMatrix() const { return derived(); }

    /** \returns the matrix with the inverse permutation applied to the columns.
      */
    template<typename OtherDerived> friend
    const Product<OtherDerived, InverseType, AliasFreeProduct>
    operator*(const MatrixBase<OtherDerived>& matrix, const InverseType& trPerm)
    {
      return Product<OtherDerived, InverseType, AliasFreeProduct>(matrix.derived(), trPerm.derived());
    }

    /** \returns the matrix with the inverse permutation applied to the rows.
      */
    template<typename OtherDerived>
    const Product<InverseType, OtherDerived, AliasFreeProduct>
    operator*(const MatrixBase<OtherDerived>& matrix) const
    {
      return Product<InverseType, OtherDerived, AliasFreeProduct>(derived(), matrix.derived());
    }
};

template<typename Derived>
const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const
{
  return derived();
}

namespace internal {

template<> struct AssignmentKind<DenseShape,PermutationShape> { typedef EigenBase2EigenBase Kind; };

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_PERMUTATIONMATRIX_H