aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/PermutationMatrix.h
blob: 4d30b2dac8cea76a77ffa06b47ae595a7bbda8b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_PERMUTATIONMATRIX_H
#define EIGEN_PERMUTATIONMATRIX_H

/** \class PermutationMatrix
  *
  * \brief Permutation matrix
  *
  * \param SizeAtCompileTime the number of rows/cols, or Dynamic
  * \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
  *
  * This class represents a permutation matrix, internally stored as a vector of integers.
  * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
  * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
  *  \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
  * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have:
  *  \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f]
  *
  * Permutation matrices are square and invertible.
  *
  * Notice that in addition to the member functions and operators listed here, there also are non-member
  * operator* to multiply a PermutationMatrix with any kind of matrix expression (MatrixBase) on either side.
  *
  * \sa class DiagonalMatrix
  */
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime> class PermutationMatrix;
template<typename PermutationType, typename MatrixType, int Side> struct ei_permut_matrix_product_retval;

template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct ei_traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
 : ei_traits<Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{};

template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
class PermutationMatrix : public AnyMatrixBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
{
  public:

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    typedef ei_traits<PermutationMatrix> Traits;
    typedef Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime>
            DenseMatrixType;
    enum {
      Flags = Traits::Flags,
      CoeffReadCost = Traits::CoeffReadCost,
      RowsAtCompileTime = Traits::RowsAtCompileTime,
      ColsAtCompileTime = Traits::ColsAtCompileTime,
      MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
    };
    typedef typename Traits::Scalar Scalar;
    #endif

    typedef Matrix<int, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;

    inline PermutationMatrix()
    {
    }

    /** Copy constructor. */
    template<int OtherSize, int OtherMaxSize>
    inline PermutationMatrix(const PermutationMatrix<OtherSize, OtherMaxSize>& other)
      : m_indices(other.indices()) {}

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** Standard copy constructor. Defined only to prevent a default copy constructor
      * from hiding the other templated constructor */
    inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
    #endif

    /** Generic constructor from expression of the indices. The indices
      * array has the meaning that the permutations sends each integer i to indices[i].
      *
      * \warning It is your responsibility to check that the indices array that you passes actually
      * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the
      * array's size.
      */
    template<typename Other>
    explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices)
    {}

    /** Copies the other permutation into *this */
    template<int OtherSize, int OtherMaxSize>
    PermutationMatrix& operator=(const PermutationMatrix<OtherSize, OtherMaxSize>& other)
    {
      m_indices = other.indices();
      return *this;
    }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** This is a special case of the templated operator=. Its purpose is to
      * prevent a default operator= from hiding the templated operator=.
      */
    PermutationMatrix& operator=(const PermutationMatrix& other)
    {
      m_indices = other.m_indices;
      return *this;
    }
    #endif

    /** Constructs an uninitialized permutation matrix of given size.
      */
    inline PermutationMatrix(int size) : m_indices(size)
    {}

    /** \returns the number of rows */
    inline int rows() const { return m_indices.size(); }

    /** \returns the number of columns */
    inline int cols() const { return m_indices.size(); }

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename DenseDerived>
    void evalTo(MatrixBase<DenseDerived>& other) const
    {
      other.setZero();
      for (int i=0; i<rows();++i)
        other.coeffRef(m_indices.coeff(i),i) = typename DenseDerived::Scalar(1);
    }
    #endif

    /** \returns a Matrix object initialized from this permutation matrix. Notice that it
      * is inefficient to return this Matrix object by value. For efficiency, favor using
      * the Matrix constructor taking AnyMatrixBase objects.
      */
    DenseMatrixType toDenseMatrix() const
    {
      return *this;
    }

    /** const version of indices(). */
    const IndicesType& indices() const { return m_indices; }
    /** \returns a reference to the stored array representing the permutation. */
    IndicesType& indices() { return m_indices; }

    /** Resizes to given size.
      */
    inline void resize(int size)
    {
      m_indices.resize(size);
    }

    /** Sets *this to be the identity permutation matrix */
    void setIdentity()
    {
      for(int i = 0; i < m_indices.size(); ++i)
        m_indices.coeffRef(i) = i;
    }

    /** Sets *this to be the identity permutation matrix of given size.
      */
    void setIdentity(int size)
    {
      resize(size);
      setIdentity();
    }

    /** Multiplies *this by the transposition \f$(ij)\f$ on the left.
      *
      * \returns a reference to *this.
      *
      * \warning This is much slower than applyTranspositionOnTheRight(int,int):
      * this has linear complexity and requires a lot of branching.
      *
      * \sa applyTranspositionOnTheRight(int,int)
      */
    PermutationMatrix& applyTranspositionOnTheLeft(int i, int j)
    {
      ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
      for(int k = 0; k < m_indices.size(); ++k)
      {
        if(m_indices.coeff(k) == i) m_indices.coeffRef(k) = j;
        else if(m_indices.coeff(k) == j) m_indices.coeffRef(k) = i;
      }
      return *this;
    }

    /** Multiplies *this by the transposition \f$(ij)\f$ on the right.
      *
      * \returns a reference to *this.
      *
      * This is a fast operation, it only consists in swapping two indices.
      *
      * \sa applyTranspositionOnTheLeft(int,int)
      */
    PermutationMatrix& applyTranspositionOnTheRight(int i, int j)
    {
      ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
      std::swap(m_indices.coeffRef(i), m_indices.coeffRef(j));
      return *this;
    }

    /**** inversion and multiplication helpers to hopefully get RVO ****/

#ifndef EIGEN_PARSED_BY_DOXYGEN
  protected:
    enum Inverse_t {Inverse};
    PermutationMatrix(Inverse_t, const PermutationMatrix& other)
      : m_indices(other.m_indices.size())
    {
      for (int i=0; i<rows();++i) m_indices.coeffRef(other.m_indices.coeff(i)) = i;
    }
    enum Product_t {Product};
    PermutationMatrix(Product_t, const PermutationMatrix& lhs, const PermutationMatrix& rhs)
      : m_indices(lhs.m_indices.size())
    {
      ei_assert(lhs.cols() == rhs.rows());
      for (int i=0; i<rows();++i) m_indices.coeffRef(i) = lhs.m_indices.coeff(rhs.m_indices.coeff(i));
    }
#endif

  public:
    /** \returns the inverse permutation matrix.
      *
      * \note \note_try_to_help_rvo
      */
    inline PermutationMatrix inverse() const
    { return PermutationMatrix(Inverse, *this); }
    /** \returns the product permutation matrix.
      *
      * \note \note_try_to_help_rvo
      */
    template<int OtherSize, int OtherMaxSize>
    inline PermutationMatrix operator*(const PermutationMatrix<OtherSize, OtherMaxSize>& other) const
    { return PermutationMatrix(Product, *this, other); }

  protected:

    IndicesType m_indices;
};

/** \returns the matrix with the permutation applied to the columns.
  */
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
inline const ei_permut_matrix_product_retval<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
operator*(const MatrixBase<Derived>& matrix,
          const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation)
{
  return ei_permut_matrix_product_retval
           <PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
           (permutation, matrix.derived());
}

/** \returns the matrix with the permutation applied to the rows.
  */
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
inline const ei_permut_matrix_product_retval
               <PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
operator*(const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation,
          const MatrixBase<Derived>& matrix)
{
  return ei_permut_matrix_product_retval
           <PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
           (permutation, matrix.derived());
}

template<typename PermutationType, typename MatrixType, int Side>
struct ei_traits<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side> >
{
  typedef typename MatrixType::PlainMatrixType ReturnMatrixType;
};

template<typename PermutationType, typename MatrixType, int Side>
struct ei_permut_matrix_product_retval
 : public ReturnByValue<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side> >
{
    typedef typename ei_cleantype<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;

    ei_permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
      : m_permutation(perm), m_matrix(matrix)
    {}

    inline int rows() const { return m_matrix.rows(); }
    inline int cols() const { return m_matrix.cols(); }

    template<typename Dest> inline void evalTo(Dest& dst) const
    {
      const int n = Side==OnTheLeft ? rows() : cols();
      for(int i = 0; i < n; ++i)
      {
        Block<
          Dest,
          Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime,
          Side==OnTheRight ? 1 : Dest::ColsAtCompileTime
        >(dst, Side==OnTheLeft ? m_permutation.indices().coeff(i) : i)

        =

        Block<
          MatrixTypeNestedCleaned,
          Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,
          Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime
        >(m_matrix, Side==OnTheRight ? m_permutation.indices().coeff(i) : i);
      }
    }

  protected:
    const PermutationType& m_permutation;
    const typename MatrixType::Nested m_matrix;

  private:
    ei_permut_matrix_product_retval& operator=(ei_permut_matrix_product_retval&);
};

#endif // EIGEN_PERMUTATIONMATRIX_H