aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/NumTraits.h
blob: 37787b569c314e88cb1770f5a4eebfc3283a58ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_NUMTRAITS_H
#define EIGEN_NUMTRAITS_H

/** \class NumTraits
  *
  * \brief Holds some data about the various numeric (i.e. scalar) types allowed by Eigen.
  *
  * \param T the numeric type about which this class provides data. Recall that Eigen allows
  *          only the following types for \a T: \c int, \c float, \c double,
  *          \c std::complex<float>, \c std::complex<double>, and \c long \c double (especially
  *          useful to enforce x87 arithmetics when SSE is the default).
  *
  * The provided data consists of everything that is supported by std::numeric_limits, plus:
  * \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real,
  *     then \a Real is just a typedef to \a T. If \a T is \c std::complex<U> then \a Real
  *     is a typedef to \a U.
  * \li A typedef \a FloatingPoint, giving the "floating-point type" of \a T. If \a T is
  *     \c int, then \a FloatingPoint is a typedef to \c double. Otherwise, \a FloatingPoint
  *     is a typedef to \a T.
  * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
  *     type, and to 0 otherwise.
  * \li An enum \a HasFloatingPoint. It is equal to \c 0 if \a T is \c int,
  *     and to \c 1 otherwise.
  * \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T.
  * \li A dummy_precision() function returning a weak epsilon value. It is mainly used by the fuzzy comparison operators.
  * \li Two highest() and lowest() functions returning the highest and lowest possible values respectively.
  */
template<typename T> struct NumTraits;

template<typename T> struct ei_default_float_numtraits
  : std::numeric_limits<T>
{
  inline static T highest() { return  std::numeric_limits<T>::max(); }
  inline static T lowest()  { return -std::numeric_limits<T>::max(); }
};

template<typename T> struct ei_default_integral_numtraits
  : std::numeric_limits<T>
{
  inline static T dummy_precision() { return T(0); }
  inline static T highest() { return std::numeric_limits<T>::max(); }
  inline static T lowest()  { return std::numeric_limits<T>::min(); }
};

template<> struct NumTraits<int>
  : ei_default_integral_numtraits<int>
{
  typedef int Real;
  typedef double FloatingPoint;
  typedef int Nested;
  enum {
    IsComplex = 0,
    HasFloatingPoint = 0,
    ReadCost = 1,
    AddCost = 1,
    MulCost = 1
  };
};

template<> struct NumTraits<float>
  : ei_default_float_numtraits<float>
{
  typedef float Real;
  typedef float FloatingPoint;
  typedef float Nested;
  enum {
    IsComplex = 0,
    HasFloatingPoint = 1,
    ReadCost = 1,
    AddCost = 1,
    MulCost = 1
  };

  inline static float dummy_precision() { return 1e-5f; }
};

template<> struct NumTraits<double>
  : ei_default_float_numtraits<double>
{
  typedef double Real;
  typedef double FloatingPoint;
  typedef double Nested;
  enum {
    IsComplex = 0,
    HasFloatingPoint = 1,
    ReadCost = 1,
    AddCost = 1,
    MulCost = 1
  };

  inline static double dummy_precision() { return 1e-12; }
};

template<typename _Real> struct NumTraits<std::complex<_Real> >
  : ei_default_float_numtraits<std::complex<_Real> >
{
  typedef _Real Real;
  typedef std::complex<_Real> FloatingPoint;
  typedef std::complex<_Real> Nested;
  enum {
    IsComplex = 1,
    HasFloatingPoint = NumTraits<Real>::HasFloatingPoint,
    ReadCost = 2,
    AddCost = 2 * NumTraits<Real>::AddCost,
    MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
  };

  inline static Real epsilon() { return std::numeric_limits<Real>::epsilon(); }
  inline static Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
};

template<> struct NumTraits<long long int>
  : ei_default_integral_numtraits<long long int>
{
  typedef long long int Real;
  typedef long double FloatingPoint;
  typedef long long int Nested;
  enum {
    IsComplex = 0,
    HasFloatingPoint = 0,
    ReadCost = 1,
    AddCost = 1,
    MulCost = 1
  };
};

template<> struct NumTraits<long double>
  : ei_default_float_numtraits<long double>
{
  typedef long double Real;
  typedef long double FloatingPoint;
  typedef long double Nested;
  enum {
    IsComplex = 0,
    HasFloatingPoint = 1,
    ReadCost = 1,
    AddCost = 1,
    MulCost = 1
  };

  static inline long double dummy_precision() { return NumTraits<double>::dummy_precision(); }
};

template<> struct NumTraits<bool>
  : ei_default_integral_numtraits<bool>
{
  typedef bool Real;
  typedef float FloatingPoint;
  typedef bool Nested;
  enum {
    IsComplex = 0,
    HasFloatingPoint = 0,
    ReadCost = 1,
    AddCost = 1,
    MulCost = 1
  };
};

#endif // EIGEN_NUMTRAITS_H