1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H
/** \class MatrixBase
*
* \brief Base class for all matrices, vectors, and expressions
*
* This class is the base that is inherited by all matrix, vector, and expression
* types. Most of the Eigen API is contained in this class. Other important classes for
* the Eigen API are Matrix, Cwise, and PartialRedux.
*
* Note that some methods are defined in the \ref Array module.
*
* \param Derived is the derived type, e.g. a matrix type, or an expression, etc.
*
* When writing a function taking Eigen objects as argument, if you want your function
* to take as argument any matrix, vector, or expression, just let it take a
* MatrixBase argument. As an example, here is a function printFirstRow which, given
* a matrix, vector, or expression \a x, prints the first row of \a x.
*
* \code
template<typename Derived>
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
{
cout << x.row(0) << endl;
}
* \endcode
*
*/
template<typename Derived> class MatrixBase
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
class InnerIterator;
typedef typename ei_traits<Derived>::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
#endif // not EIGEN_PARSED_BY_DOXYGEN
enum {
RowsAtCompileTime = ei_traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
ColsAtCompileTime = ei_traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
SizeAtCompileTime = (ei_size_at_compile_time<ei_traits<Derived>::RowsAtCompileTime,
ei_traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = ei_traits<Derived>::MaxRowsAtCompileTime,
/**< This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
MaxColsAtCompileTime = ei_traits<Derived>::MaxColsAtCompileTime,
/**< This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
MaxSizeAtCompileTime = (ei_size_at_compile_time<ei_traits<Derived>::MaxRowsAtCompileTime,
ei_traits<Derived>::MaxColsAtCompileTime>::ret),
/**< This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
IsVectorAtCompileTime = ei_traits<Derived>::RowsAtCompileTime == 1
|| ei_traits<Derived>::ColsAtCompileTime == 1,
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
Flags = ei_traits<Derived>::Flags,
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
CoeffReadCost = ei_traits<Derived>::CoeffReadCost
/**< This is a rough measure of how expensive it is to read one coefficient from
* this expression.
*/
};
/** Default constructor. Just checks at compile-time for self-consistency of the flags. */
MatrixBase()
{
ei_assert(ei_are_flags_consistent<Flags>::ret);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
* \a Scalar is \a std::complex<T> then RealScalar is \a T.
*
* \sa class NumTraits
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
/** type of the equivalent square matrix */
typedef Matrix<Scalar,EIGEN_ENUM_MAX(RowsAtCompileTime,ColsAtCompileTime),
EIGEN_ENUM_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
inline int rows() const { return derived().rows(); }
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
inline int cols() const { return derived().cols(); }
/** \returns the number of coefficients, which is \a rows()*cols().
* \sa rows(), cols(), SizeAtCompileTime. */
inline int size() const { return rows() * cols(); }
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
inline int nonZeros() const { return derived.nonZeros(); }
/** \returns true if either the number of rows or the number of columns is equal to 1.
* In other words, this function returns
* \code rows()==1 || cols()==1 \endcode
* \sa rows(), cols(), IsVectorAtCompileTime. */
inline bool isVector() const { return rows()==1 || cols()==1; }
/** \returns the size of the storage major dimension,
* i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
int outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
/** \returns the size of the inner dimension according to the storage order,
* i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
int innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal the plain matrix type corresponding to this expression. Note that is not necessarily
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
* reference to a matrix, not a matrix! It guaranteed however, that the return type of eval() is either
* PlainMatrixType or const PlainMatrixType&.
*/
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType;
/** \internal the column-major plain matrix type corresponding to this expression. Note that is not necessarily
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
* reference to a matrix, not a matrix!
* The only difference from PlainMatrixType is that PlainMatrixType_ColMajor is guaranteed to be column-major.
*/
typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType_ColMajor;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<ei_scalar_constant_op<Scalar>,Derived> ConstantReturnType;
/** \internal Represents a scalar multiple of a matrix */
typedef CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, Derived> ScalarMultipleReturnType;
/** \internal Represents a quotient of a matrix by a scalar*/
typedef CwiseUnaryOp<ei_scalar_quotient1_op<Scalar>, Derived> ScalarQuotient1ReturnType;
/** \internal the return type of MatrixBase::conjugate() */
typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex,
const CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Derived>,
const Derived&
>::ret ConjugateReturnType;
/** \internal the return type of MatrixBase::real() */
typedef CwiseUnaryOp<ei_scalar_real_op<Scalar>, Derived> RealReturnType;
/** \internal the return type of MatrixBase::imag() */
typedef CwiseUnaryOp<ei_scalar_imag_op<Scalar>, Derived> ImagReturnType;
/** \internal the return type of MatrixBase::adjoint() */
typedef Eigen::Transpose<NestByValue<typename ei_cleantype<ConjugateReturnType>::type> >
AdjointReturnType;
/** \internal the return type of MatrixBase::eigenvalues() */
typedef Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
/** \internal expression tyepe of a column */
typedef Block<Derived, ei_traits<Derived>::RowsAtCompileTime, 1> ColXpr;
/** \internal expression tyepe of a column */
typedef Block<Derived, 1, ei_traits<Derived>::ColsAtCompileTime> RowXpr;
/** \internal the return type of identity */
typedef CwiseNullaryOp<ei_scalar_identity_op<Scalar>,Derived> IdentityReturnType;
/** \internal the return type of unit vectors */
typedef Block<CwiseNullaryOp<ei_scalar_identity_op<Scalar>, SquareMatrixType>,
ei_traits<Derived>::RowsAtCompileTime,
ei_traits<Derived>::ColsAtCompileTime> BasisReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
Derived& operator=(const MatrixBase<OtherDerived>& other);
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
inline Derived& operator=(const MatrixBase& other)
{
return this->operator=<Derived>(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this without evaluating other. \returns a reference to *this. */
template<typename OtherDerived>
Derived& lazyAssign(const MatrixBase<OtherDerived>& other);
/** Overloaded for cache friendly product evaluation */
template<typename Lhs, typename Rhs>
Derived& lazyAssign(const Product<Lhs,Rhs,CacheFriendlyProduct>& product);
/** Overloaded for cache friendly product evaluation */
template<typename OtherDerived>
Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other)
{ return lazyAssign(other._expression()); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
CommaInitializer<Derived> operator<< (const Scalar& s);
template<typename OtherDerived>
CommaInitializer<Derived> operator<< (const MatrixBase<OtherDerived>& other);
const Scalar coeff(int row, int col) const;
const Scalar operator()(int row, int col) const;
Scalar& coeffRef(int row, int col);
Scalar& operator()(int row, int col);
const Scalar coeff(int index) const;
const Scalar operator[](int index) const;
const Scalar operator()(int index) const;
Scalar& coeffRef(int index);
Scalar& operator[](int index);
Scalar& operator()(int index);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
void copyCoeff(int row, int col, const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
void copyCoeff(int index, const MatrixBase<OtherDerived>& other);
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(int row, int col, const MatrixBase<OtherDerived>& other);
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(int index, const MatrixBase<OtherDerived>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
template<int LoadMode>
PacketScalar packet(int row, int col) const;
template<int StoreMode>
void writePacket(int row, int col, const PacketScalar& x);
template<int LoadMode>
PacketScalar packet(int index) const;
template<int StoreMode>
void writePacket(int index, const PacketScalar& x);
const Scalar x() const;
const Scalar y() const;
const Scalar z() const;
const Scalar w() const;
Scalar& x();
Scalar& y();
Scalar& z();
Scalar& w();
const CwiseUnaryOp<ei_scalar_opposite_op<typename ei_traits<Derived>::Scalar>,Derived> operator-() const;
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_sum_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
operator+(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
const CwiseBinaryOp<ei_scalar_difference_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
operator-(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
Derived& operator+=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const MatrixBase<OtherDerived>& other);
template<typename Lhs,typename Rhs>
Derived& operator+=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other);
Derived& operator*=(const Scalar& other);
Derived& operator/=(const Scalar& other);
const ScalarMultipleReturnType operator*(const Scalar& scalar) const;
const CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<Derived>::Scalar>, Derived>
operator/(const Scalar& scalar) const;
inline friend const CwiseUnaryOp<ei_scalar_multiple_op<typename ei_traits<Derived>::Scalar>, Derived>
operator*(const Scalar& scalar, const MatrixBase& matrix)
{ return matrix*scalar; }
template<typename OtherDerived>
const typename ProductReturnType<Derived,OtherDerived>::Type
operator*(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
Derived& operator*=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
typename ei_plain_matrix_type_column_major<OtherDerived>::type
solveTriangular(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
void solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
Scalar dot(const MatrixBase<OtherDerived>& other) const;
RealScalar squaredNorm() const;
RealScalar norm() const;
RealScalar stableNorm() const;
const PlainMatrixType normalized() const;
void normalize();
Eigen::Transpose<Derived> transpose();
const Eigen::Transpose<Derived> transpose() const;
void transposeInPlace();
const AdjointReturnType adjoint() const;
RowXpr row(int i);
const RowXpr row(int i) const;
ColXpr col(int i);
const ColXpr col(int i) const;
Minor<Derived> minor(int row, int col);
const Minor<Derived> minor(int row, int col) const;
typename BlockReturnType<Derived>::Type block(int startRow, int startCol, int blockRows, int blockCols);
const typename BlockReturnType<Derived>::Type
block(int startRow, int startCol, int blockRows, int blockCols) const;
typename BlockReturnType<Derived>::SubVectorType segment(int start, int size);
const typename BlockReturnType<Derived>::SubVectorType segment(int start, int size) const;
typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size);
const typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size) const;
typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size);
const typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size) const;
typename BlockReturnType<Derived>::Type corner(CornerType type, int cRows, int cCols);
const typename BlockReturnType<Derived>::Type corner(CornerType type, int cRows, int cCols) const;
template<int BlockRows, int BlockCols>
typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol);
template<int BlockRows, int BlockCols>
const typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol) const;
template<int CRows, int CCols>
typename BlockReturnType<Derived, CRows, CCols>::Type corner(CornerType type);
template<int CRows, int CCols>
const typename BlockReturnType<Derived, CRows, CCols>::Type corner(CornerType type) const;
template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType start(void);
template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType start() const;
template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType end();
template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType end() const;
template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType segment(int start);
template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType segment(int start) const;
DiagonalCoeffs<Derived> diagonal();
const DiagonalCoeffs<Derived> diagonal() const;
template<int Id> DiagonalCoeffs<Derived,Id> diagonal();
template<int Id> const DiagonalCoeffs<Derived,Id> diagonal() const;
template<unsigned int Mode> Part<Derived, Mode> part();
template<unsigned int Mode> const Part<Derived, Mode> part() const;
static const ConstantReturnType
Constant(int rows, int cols, const Scalar& value);
static const ConstantReturnType
Constant(int size, const Scalar& value);
static const ConstantReturnType
Constant(const Scalar& value);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(int rows, int cols, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(int size, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(const CustomNullaryOp& func);
static const ConstantReturnType Zero(int rows, int cols);
static const ConstantReturnType Zero(int size);
static const ConstantReturnType Zero();
static const ConstantReturnType Ones(int rows, int cols);
static const ConstantReturnType Ones(int size);
static const ConstantReturnType Ones();
static const IdentityReturnType Identity();
static const IdentityReturnType Identity(int rows, int cols);
static const BasisReturnType Unit(int size, int i);
static const BasisReturnType Unit(int i);
static const BasisReturnType UnitX();
static const BasisReturnType UnitY();
static const BasisReturnType UnitZ();
static const BasisReturnType UnitW();
const DiagonalMatrixWrapper<Derived> asDiagonal() const;
void fill(const Scalar& value);
Derived& setConstant(const Scalar& value);
Derived& setZero();
Derived& setOnes();
Derived& setRandom();
Derived& setIdentity();
template<typename OtherDerived>
bool isApprox(const MatrixBase<OtherDerived>& other,
RealScalar prec = precision<Scalar>()) const;
bool isMuchSmallerThan(const RealScalar& other,
RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
bool isMuchSmallerThan(const MatrixBase<OtherDerived>& other,
RealScalar prec = precision<Scalar>()) const;
bool isApproxToConstant(const Scalar& value, RealScalar prec = precision<Scalar>()) const;
bool isZero(RealScalar prec = precision<Scalar>()) const;
bool isOnes(RealScalar prec = precision<Scalar>()) const;
bool isIdentity(RealScalar prec = precision<Scalar>()) const;
bool isDiagonal(RealScalar prec = precision<Scalar>()) const;
bool isUpperTriangular(RealScalar prec = precision<Scalar>()) const;
bool isLowerTriangular(RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
RealScalar prec = precision<Scalar>()) const;
bool isUnitary(RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
inline bool operator==(const MatrixBase<OtherDerived>& other) const
{ return (cwise() == other).all(); }
template<typename OtherDerived>
inline bool operator!=(const MatrixBase<OtherDerived>& other) const
{ return (cwise() != other).any(); }
template<typename NewType>
const CwiseUnaryOp<ei_scalar_cast_op<typename ei_traits<Derived>::Scalar, NewType>, Derived> cast() const;
/** \returns the matrix or vector obtained by evaluating this expression.
*
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
* a const reference, in order to avoid a useless copy.
*/
EIGEN_STRONG_INLINE const typename ei_eval<Derived>::type eval() const
{ return typename ei_eval<Derived>::type(derived()); }
template<typename OtherDerived>
void swap(const MatrixBase<OtherDerived>& other);
template<unsigned int Added>
const Flagged<Derived, Added, 0> marked() const;
const Flagged<Derived, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit> lazy() const;
/** \returns number of elements to skip to pass from one row (resp. column) to another
* for a row-major (resp. column-major) matrix.
* Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data
* of the underlying matrix.
*/
inline int stride(void) const { return derived().stride(); }
inline const NestByValue<Derived> nestByValue() const;
ConjugateReturnType conjugate() const;
const RealReturnType real() const;
const ImagReturnType imag() const;
template<typename CustomUnaryOp>
const CwiseUnaryOp<CustomUnaryOp, Derived> unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const;
template<typename CustomBinaryOp, typename OtherDerived>
const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
Scalar sum() const;
Scalar trace() const;
typename ei_traits<Derived>::Scalar minCoeff() const;
typename ei_traits<Derived>::Scalar maxCoeff() const;
typename ei_traits<Derived>::Scalar minCoeff(int* row, int* col = 0) const;
typename ei_traits<Derived>::Scalar maxCoeff(int* row, int* col = 0) const;
template<typename BinaryOp>
typename ei_result_of<BinaryOp(typename ei_traits<Derived>::Scalar)>::type
redux(const BinaryOp& func) const;
template<typename Visitor>
void visit(Visitor& func) const;
#ifndef EIGEN_PARSED_BY_DOXYGEN
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<MatrixBase*>(this)); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
const Cwise<Derived> cwise() const;
Cwise<Derived> cwise();
inline const WithFormat<Derived> format(const IOFormat& fmt) const;
/////////// Array module ///////////
bool all(void) const;
bool any(void) const;
int count() const;
const PartialRedux<Derived,Horizontal> rowwise() const;
const PartialRedux<Derived,Vertical> colwise() const;
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random(int rows, int cols);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random(int size);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random();
template<typename ThenDerived,typename ElseDerived>
const Select<Derived,ThenDerived,ElseDerived>
select(const MatrixBase<ThenDerived>& thenMatrix,
const MatrixBase<ElseDerived>& elseMatrix) const;
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, NestByValue<typename ThenDerived::ConstantReturnType> >
select(const MatrixBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
template<typename ElseDerived>
inline const Select<Derived, NestByValue<typename ElseDerived::ConstantReturnType>, ElseDerived >
select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;
template<int p> RealScalar lpNorm() const;
/////////// LU module ///////////
const LU<PlainMatrixType> lu() const;
const PlainMatrixType inverse() const;
void computeInverse(PlainMatrixType *result) const;
Scalar determinant() const;
/////////// Cholesky module ///////////
const LLT<PlainMatrixType> llt() const;
const LDLT<PlainMatrixType> ldlt() const;
/////////// QR module ///////////
const QR<PlainMatrixType> qr() const;
EigenvaluesReturnType eigenvalues() const;
RealScalar operatorNorm() const;
/////////// SVD module ///////////
SVD<PlainMatrixType> svd() const;
/////////// Geometry module ///////////
template<typename OtherDerived>
PlainMatrixType cross(const MatrixBase<OtherDerived>& other) const;
PlainMatrixType unitOrthogonal(void) const;
Matrix<Scalar,3,1> eulerAngles(int a0, int a1, int a2) const;
/////////// Sparse module ///////////
// dense = spasre * dense
template<typename Derived1, typename Derived2>
Derived& lazyAssign(const SparseProduct<Derived1,Derived2,SparseTimeDenseProduct>& product);
// dense = dense * spasre
template<typename Derived1, typename Derived2>
Derived& lazyAssign(const SparseProduct<Derived1,Derived2,DenseTimeSparseProduct>& product);
#ifdef EIGEN_MATRIXBASE_PLUGIN
#include EIGEN_MATRIXBASE_PLUGIN
#endif
};
#endif // EIGEN_MATRIXBASE_H
|