aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/MatrixBase.h
blob: 62dfc6beec0cf1570039d6bfd654d3a46030d180 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H

/** \class MatrixBase
  *
  * \brief Base class for all matrices, vectors, and expressions
  *
  * This class is the base that is inherited by all matrix, vector, and expression
  * types. Most of the Eigen API is contained in this class.
  *
  * \param Derived is the derived type, e.g. a matrix type, or an expression, etc.
  *
  * When writing a function taking Eigen objects as argument, if you want your function
  * to take as argument any matrix, vector, or expression, just let it take a
  * MatrixBase argument. As an example, here is a function printFirstRow which, given
  * a matrix, vector, or expression \a x, prints the first row of \a x.
  *
  * \code
    template<typename Derived>
    void printFirstRow(const Eigen::MatrixBase<Derived>& x)
    {
      cout << x.row(0) << endl;
    }
  * \endcode
  *
  * \nosubgrouping
  */
template<typename Derived> class MatrixBase
{
    struct CommaInitializer;

  public:

    typedef typename ei_traits<Derived>::Scalar Scalar;

    /** The number of rows at compile-time. This is just a copy of the value provided
      * by the \a Derived type. If a value is not known at compile-time,
      * it is set to the \a Dynamic constant.
      * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
    enum { RowsAtCompileTime = ei_traits<Derived>::RowsAtCompileTime };

    /** The number of columns at compile-time. This is just a copy of the value provided
      * by the \a Derived type. If a value is not known at compile-time,
      * it is set to the \a Dynamic constant.
      * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
    enum { ColsAtCompileTime = ei_traits<Derived>::ColsAtCompileTime };

    /** This is equal to the number of coefficients, i.e. the number of
      * rows times the number of columns, or to \a Dynamic if this is not
      * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
    enum { SizeAtCompileTime
      = ei_traits<Derived>::RowsAtCompileTime == Dynamic
      || ei_traits<Derived>::ColsAtCompileTime == Dynamic
      ? Dynamic
      : ei_traits<Derived>::RowsAtCompileTime * ei_traits<Derived>::ColsAtCompileTime
    };

    /** This value is equal to the maximum possible number of rows that this expression
      * might have. If this expression might have an arbitrarily high number of rows,
      * this value is set to \a Dynamic.
      *
      * This value is useful to know when evaluating an expression, in order to determine
      * whether it is possible to avoid doing a dynamic memory allocation.
      *
      * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
      */
    enum { MaxRowsAtCompileTime = ei_traits<Derived>::MaxRowsAtCompileTime };

    /** This value is equal to the maximum possible number of columns that this expression
      * might have. If this expression might have an arbitrarily high number of columns,
      * this value is set to \a Dynamic.
      *
      * This value is useful to know when evaluating an expression, in order to determine
      * whether it is possible to avoid doing a dynamic memory allocation.
      *
      * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
      */
    enum { MaxColsAtCompileTime = ei_traits<Derived>::MaxColsAtCompileTime };

    /** This value is equal to the maximum possible number of coefficients that this expression
      * might have. If this expression might have an arbitrarily high number of coefficients,
      * this value is set to \a Dynamic.
      *
      * This value is useful to know when evaluating an expression, in order to determine
      * whether it is possible to avoid doing a dynamic memory allocation.
      *
      * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
      */
    enum { MaxSizeAtCompileTime
      = ei_traits<Derived>::MaxRowsAtCompileTime == Dynamic
      || ei_traits<Derived>::MaxColsAtCompileTime == Dynamic
      ? Dynamic
      : ei_traits<Derived>::MaxRowsAtCompileTime * ei_traits<Derived>::MaxColsAtCompileTime
    };

    /** This is set to true if either the number of rows or the number of
      * columns is known at compile-time to be equal to 1. Indeed, in that case,
      * we are dealing with a column-vector (if there is only one column) or with
      * a row-vector (if there is only one row). */
    enum { IsVectorAtCompileTime
      = ei_traits<Derived>::RowsAtCompileTime == 1 || ei_traits<Derived>::ColsAtCompileTime == 1
    };

    /** This is the "reference type" used to pass objects of type MatrixBase as arguments
      * to functions. If this MatrixBase type represents an expression, then \a AsArg
      * is just this MatrixBase type itself, i.e. expressions are just passed by value
      * and the compiler is usually clever enough to optimize that. If, on the
      * other hand, this MatrixBase type is an actual matrix or vector type, then \a AsArg is
      * a typedef to MatrixRef, which works as a reference, so that matrices and vectors
      * are passed by reference, not by value. \sa asArg()*/
    typedef typename Reference<Derived>::Type AsArg;

    /** This is the "real scalar" type; if the \a Scalar type is already real numbers
      * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
      * \a Scalar is \a std::complex<T> then RealScalar is \a T.
      *
      * In fact, \a RealScalar is defined as follows:
      * \code typedef typename NumTraits<Scalar>::Real RealScalar; \endcode
      *
      * \sa class NumTraits
      */
    typedef typename NumTraits<Scalar>::Real RealScalar;

    /// \name matrix properties
    //@{
    /** \returns the number of rows. \sa cols(), RowsAtCompileTime */
    int rows() const { return static_cast<const Derived *>(this)->_rows(); }
    /** \returns the number of columns. \sa row(), ColsAtCompileTime*/
    int cols() const { return static_cast<const Derived *>(this)->_cols(); }
    /** \returns the number of coefficients, which is \a rows()*cols().
      * \sa rows(), cols(), SizeAtCompileTime. */
    int size() const { return rows() * cols(); }
    /** \returns true if either the number of rows or the number of columns is equal to 1.
      * In other words, this function returns
      * \code rows()==1 || cols()==1 \endcode
      * \sa rows(), cols(), IsVectorAtCompileTime. */
    bool isVector() const { return rows()==1 || cols()==1; }
    //@}

    /** \returns a AsArg to *this. \sa AsArg */
    AsArg asArg() const
    { return static_cast<const Derived *>(this)->_asArg(); }

    /** Copies \a other into *this. \returns a reference to *this. */
    template<typename OtherDerived>
    Derived& operator=(const MatrixBase<OtherDerived>& other);

    /** Special case of the template operator=, in order to prevent the compiler
      * from generating a default operator= (issue hit with g++ 4.1)
      */
    Derived& operator=(const MatrixBase& other)
    {
      return this->operator=<Derived>(other);
    }

    CommaInitializer operator<< (const Scalar& s);

    template<typename OtherDerived>
    CommaInitializer operator<< (const MatrixBase<OtherDerived>& other);

    /** swaps *this with the expression \a other.
      *
      * \note \a other is only marked const because I couln't find another way
      * to get g++ 4.2 to accept that template parameter resolution. It gets const_cast'd
      * of course. TODO: get rid of const here.
      */
    template<typename OtherDerived>
    void swap(const MatrixBase<OtherDerived>& other);

    /// \name sub-matrices
    //@{
    Row<Derived> row(int i);
    const Row<Derived> row(int i) const;

    Column<Derived> col(int i);
    const Column<Derived> col(int i) const;

    Minor<Derived> minor(int row, int col);
    const Minor<Derived> minor(int row, int col) const;

    Block<Derived> block(int startRow, int startCol, int blockRows, int blockCols);
    const Block<Derived>
    block(int startRow, int startCol, int blockRows, int blockCols) const;

    Block<Derived> block(int start, int size);
    const Block<Derived> block(int start, int size) const;

    Block<Derived> start(int size);
    const Block<Derived> start(int size) const;

    Block<Derived> end(int size);
    const Block<Derived> end(int size) const;

    Block<Derived> corner(CornerType type, int cRows, int cCols);
    const Block<Derived> corner(CornerType type, int cRows, int cCols) const;

    template<int BlockRows, int BlockCols>
    Block<Derived, BlockRows, BlockCols> block(int startRow, int startCol);
    template<int BlockRows, int BlockCols>
    const Block<Derived, BlockRows, BlockCols> block(int startRow, int startCol) const;

    DiagonalCoeffs<Derived> diagonal();
    const DiagonalCoeffs<Derived> diagonal() const;
    //@}

    /// \name matrix transformation
    //@{
    template<typename NewType>
    const CwiseUnaryOp<ScalarCastOp<NewType>, Derived> cast() const;

    const DiagonalMatrix<Derived> asDiagonal() const;

    Transpose<Derived> transpose();
    const Transpose<Derived> transpose() const;

    const CwiseUnaryOp<ScalarConjugateOp, Derived> conjugate() const;
    const Transpose<CwiseUnaryOp<ScalarConjugateOp, Derived> > adjoint() const;

    const CwiseUnaryOp<ScalarMultipleOp<Scalar>, Derived> normalized() const;
    //@}

    // FIXME not sure about the following name
    /// \name metrics
    //@{
    Scalar trace() const;

    template<typename OtherDerived>
    Scalar dot(const MatrixBase<OtherDerived>& other) const;
    RealScalar norm2() const;
    RealScalar norm()  const;
    //@}

    static const Eval<Random<Derived> > random(int rows, int cols);
    static const Eval<Random<Derived> > random(int size);
    static const Eval<Random<Derived> > random();
    static const Zero<Derived> zero(int rows, int cols);
    static const Zero<Derived> zero(int size);
    static const Zero<Derived> zero();
    static const Ones<Derived> ones(int rows, int cols);
    static const Ones<Derived> ones(int size);
    static const Ones<Derived> ones();
    static const Identity<Derived> identity();
    static const Identity<Derived> identity(int rows, int cols);

    Derived& setZero();
    Derived& setOnes();
    Derived& setRandom();
    Derived& setIdentity();

    /// \name matrix diagnostic and comparison
    //@{
    bool isZero(RealScalar prec = precision<Scalar>()) const;
    bool isOnes(RealScalar prec = precision<Scalar>()) const;
    bool isIdentity(RealScalar prec = precision<Scalar>()) const;
    bool isDiagonal(RealScalar prec = precision<Scalar>()) const;

    template<typename OtherDerived>
    bool isOrtho(const MatrixBase<OtherDerived>& other,
                 RealScalar prec = precision<Scalar>()) const;
    bool isOrtho(RealScalar prec = precision<Scalar>()) const;

    template<typename OtherDerived>
    bool isApprox(const OtherDerived& other,
                  RealScalar prec = precision<Scalar>()) const;
    bool isMuchSmallerThan(const RealScalar& other,
                           RealScalar prec = precision<Scalar>()) const;
    template<typename OtherDerived>
    bool isMuchSmallerThan(const MatrixBase<OtherDerived>& other,
                           RealScalar prec = precision<Scalar>()) const;
    //@}

    /// \name arithemetic operators
    //@{
    const CwiseUnaryOp<ScalarOppositeOp,Derived> operator-() const;

    template<typename OtherDerived>
    Derived& operator+=(const MatrixBase<OtherDerived>& other);
    template<typename OtherDerived>
    Derived& operator-=(const MatrixBase<OtherDerived>& other);
    template<typename OtherDerived>
    Derived& operator*=(const MatrixBase<OtherDerived>& other);

    Derived& operator*=(const Scalar& other);
    Derived& operator/=(const Scalar& other);

    const CwiseUnaryOp<ScalarMultipleOp<Scalar>, Derived> operator*(const Scalar& scalar) const;
    const CwiseUnaryOp<ScalarMultipleOp<Scalar>, Derived> operator/(const Scalar& scalar) const;

    friend const CwiseUnaryOp<ScalarMultipleOp<Scalar>, Derived>
    operator*(const Scalar& scalar, const MatrixBase& matrix)
    { return matrix*scalar; }

    template<typename OtherDerived>
    const Product<Derived, OtherDerived>
    lazyProduct(const MatrixBase<OtherDerived>& other) const EIGEN_ALWAYS_INLINE;

    const CwiseUnaryOp<ScalarAbsOp,Derived> cwiseAbs() const;

    template<typename OtherDerived>
    const CwiseBinaryOp<ScalarProductOp, Derived, OtherDerived>
    cwiseProduct(const MatrixBase<OtherDerived> &other) const;

    template<typename OtherDerived>
    const CwiseBinaryOp<ScalarQuotientOp, Derived, OtherDerived>
    cwiseQuotient(const MatrixBase<OtherDerived> &other) const;
    //@}

    /// \name coefficient accessors
    //@{
    Scalar coeff(int row, int col) const;
    Scalar operator()(int row, int col) const;

    Scalar& coeffRef(int row, int col);
    Scalar& operator()(int row, int col);

    Scalar coeff(int index) const;
    Scalar operator[](int index) const;

    Scalar& coeffRef(int index);
    Scalar& operator[](int index);

    Scalar x() const;
    Scalar y() const;
    Scalar z() const;
    Scalar w() const;
    Scalar& x();
    Scalar& y();
    Scalar& z();
    Scalar& w();
    //@}

    /// \name special functions
    //@{
    const Eval<Derived> eval() const EIGEN_ALWAYS_INLINE;
    const EvalOMP<Derived> evalOMP() const EIGEN_ALWAYS_INLINE;

    template<typename CustomUnaryOp>
    const CwiseUnaryOp<CustomUnaryOp, Derived> cwise(const CustomUnaryOp& func = CustomUnaryOp()) const;

    template<typename CustomBinaryOp, typename OtherDerived>
    const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
    cwise(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
    //@}

    /** puts in *row and *col the location of the coefficient of *this
      * which has the biggest absolute value.
      */
    void findBiggestCoeff(int *row, int *col) const
    {
      RealScalar biggest = 0;
      for(int j = 0; j < cols(); j++)
        for(int i = 0; i < rows(); i++)
        {
          RealScalar x = ei_abs(coeff(i,j));
          if(x > biggest)
          {
            biggest = x;
            *row = i;
            *col = j;
          }
        }
    }

};

#endif // EIGEN_MATRIXBASE_H