1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIX_H
#define EIGEN_MATRIX_H
/** \class Matrix
*
* \brief The matrix class, also used for vectors and row-vectors
*
* The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen.
* Vectors are matrices with one column, and row-vectors are matrices with one row.
*
* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
*
* The first three template parameters are required:
* \param _Scalar Numeric type, i.e. float, double, int
* \param _Rows Number of rows, or \b Dynamic
* \param _Cols Number of columns, or \b Dynamic
*
* The remaining template parameters are optional -- in most cases you don't have to worry about them.
* \param _Options A combination of either \b RowMajor or \b ColMajor, and of either
* \b AutoAlign or \b DontAlign.
* The former controls storage order, and defaults to column-major. The latter controls alignment, which is required
* for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
* \param _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note").
* \param _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note").
*
* Eigen provides a number of typedefs covering the usual cases. Here are some examples:
*
* \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>)
* \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>)
* \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>)
*
* \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>)
* \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>)
*
* See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs.
*
* You can access elements of vectors and matrices using normal subscripting:
*
* \code
* Eigen::VectorXd v(10);
* v[0] = 0.1;
* v[1] = 0.2;
* v(0) = 0.3;
* v(1) = 0.4;
*
* Eigen::MatrixXi m(10, 10);
* m(0, 1) = 1;
* m(0, 2) = 2;
* m(0, 3) = 3;
* \endcode
*
* <i><b>Some notes:</b></i>
*
* <dl>
* <dt><b>\anchor dense Dense versus sparse:</b></dt>
* <dd>This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module.
*
* Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array.
* This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.</dd>
*
* <dt><b>\anchor fixedsize Fixed-size versus dynamic-size:</b></dt>
* <dd>Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array
* of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up
* to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time.
*
* Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime
* variables, and the array of coefficients is allocated dynamically on the heap.
*
* Note that \em dense matrices, be they Fixed-size or Dynamic-size, <em>do not</em> expand dynamically in the sense of a std::map.
* If you want this behavior, see the Sparse module.</dd>
*
* <dt><b>\anchor maxrows _MaxRows and _MaxCols:</b></dt>
* <dd>In most cases, one just leaves these parameters to the default values.
* These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases
* when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot
* exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols
* are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
* </dl>
*
* \see MatrixBase for the majority of the API methods for matrices
*/
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct ei_traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef _Scalar Scalar;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = ei_compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
CoeffReadCost = NumTraits<Scalar>::ReadCost
};
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Matrix
: public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix)
enum { Options = _Options };
friend class Eigen::Map<Matrix, Unaligned>;
typedef class Eigen::Map<Matrix, Unaligned> UnalignedMapType;
friend class Eigen::Map<Matrix, Aligned>;
typedef class Eigen::Map<Matrix, Aligned> AlignedMapType;
protected:
ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime, Options> m_storage;
public:
enum { NeedsToAlign = (!(Options&DontAlign))
&& SizeAtCompileTime!=Dynamic && ((sizeof(Scalar)*SizeAtCompileTime)%16)==0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
EIGEN_STRONG_INLINE int rows() const { return m_storage.rows(); }
EIGEN_STRONG_INLINE int cols() const { return m_storage.cols(); }
EIGEN_STRONG_INLINE int stride(void) const
{
if(Flags & RowMajorBit)
return m_storage.cols();
else
return m_storage.rows();
}
EIGEN_STRONG_INLINE const Scalar& coeff(int row, int col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE const Scalar& coeff(int index) const
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(int row, int col)
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(int index)
{
return m_storage.data()[index];
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
{
return ei_ploadt<Scalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(int index) const
{
return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index);
}
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(int row, int col, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()), x);
}
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(int index, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
}
/** \returns a const pointer to the data array of this matrix */
EIGEN_STRONG_INLINE const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
EIGEN_STRONG_INLINE Scalar *data()
{ return m_storage.data(); }
/** Resizes \c *this to a \a rows x \a cols matrix.
*
* This method is intended for dynamic-size matrices, although it is legal to call it on any
* matrix as long as fixed dimensions are left unchanged. If you only want to change the number
* of rows and/or of columns, you can use resize(NoChange_t, int), resize(int, NoChange_t).
*
* If the current number of coefficients of \c *this exactly matches the
* product \a rows * \a cols, then no memory allocation is performed and
* the current values are left unchanged. In all other cases, including
* shrinking, the data is reallocated and all previous values are lost.
*
* Example: \include Matrix_resize_int_int.cpp
* Output: \verbinclude Matrix_resize_int_int.out
*
* \sa resize(int) for vectors, resize(NoChange_t, int), resize(int, NoChange_t)
*/
inline void resize(int rows, int cols)
{
ei_assert((MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows)
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols)
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows * cols, rows, cols);
}
/** Resizes \c *this to a vector of length \a size
*
* \only_for_vectors. This method does not work for
* partially dynamic matrices when the static dimension is anything other
* than 1. For example it will not work with Matrix<double, 2, Dynamic>.
*
* Example: \include Matrix_resize_int.cpp
* Output: \verbinclude Matrix_resize_int.out
*
* \sa resize(int,int), resize(NoChange_t, int), resize(int, NoChange_t)
*/
inline void resize(int size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
}
/** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_NoChange_int.cpp
* Output: \verbinclude Matrix_resize_NoChange_int.out
*
* \sa resize(int,int)
*/
inline void resize(NoChange_t, int cols)
{
resize(rows(), cols);
}
/** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange
* as in the example below.
*
* Example: \include Matrix_resize_int_NoChange.cpp
* Output: \verbinclude Matrix_resize_int_NoChange.out
*
* \sa resize(int,int)
*/
inline void resize(int rows, NoChange_t)
{
resize(rows, cols());
}
/** Resizes *this to have the same dimensions as \a other.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void resizeLike(const MatrixBase<OtherDerived>& other)
{
if(RowsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(1, other.size());
}
else if(ColsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(other.size(), 1);
}
else resize(other.rows(), other.cols());
}
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
{
return _set(other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
{
return _set(other);
}
template<typename OtherDerived,typename OtherEvalType>
EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived,OtherEvalType>& func)
{ return Base::operator=(func); }
using Base::operator +=;
using Base::operator -=;
using Base::operator *=;
using Base::operator /=;
/** Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
* a matrix to 0 is not supported.
*
* \sa resize(int,int)
*/
EIGEN_STRONG_INLINE explicit Matrix() : m_storage()
{
_check_template_params();
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
Matrix(ei_constructor_without_unaligned_array_assert)
: m_storage(ei_constructor_without_unaligned_array_assert())
{}
#endif
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
EIGEN_STRONG_INLINE explicit Matrix(int dim)
: m_storage(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
ei_assert(dim > 0);
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
{
_check_template_params();
_init2<T0,T1>(x, y);
}
#else
/** constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead. */
Matrix(int rows, int cols);
/** constructs an initialized 2D vector with given coefficients */
Matrix(const Scalar& x, const Scalar& y);
#endif
/** constructs an initialized 3D vector with given coefficients */
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
{
_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
}
/** constructs an initialized 4D vector with given coefficients */
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
{
_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
m_storage.data()[3] = w;
}
explicit Matrix(const Scalar *data);
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
: m_storage(other.rows() * other.cols(), other.rows(), other.cols())
{
_check_template_params();
_set_noalias(other);
}
/** Copy constructor */
EIGEN_STRONG_INLINE Matrix(const Matrix& other)
: Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols())
{
_check_template_params();
_set_noalias(other);
}
/** Copy constructor with in-place evaluation */
template<typename OtherDerived,typename OtherEvalType>
EIGEN_STRONG_INLINE Matrix(const ReturnByValue<OtherDerived,OtherEvalType>& other)
{ other.evalTo(*this); }
/** Destructor */
inline ~Matrix() {}
/** \sa MatrixBase::operator=(const AnyMatrixBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const AnyMatrixBase<OtherDerived> &other)
{
resize(other.derived().rows(), other.derived().cols());
Base::operator=(other.derived());
return *this;
}
/** \sa MatrixBase::operator=(const AnyMatrixBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const AnyMatrixBase<OtherDerived> &other)
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
*this = other;
}
/** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
inline void swap(Matrix& other)
{
if (Base::SizeAtCompileTime==Dynamic)
m_storage.swap(other.m_storage);
else
this->Base::swap(other);
}
/** \name Map
* These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects,
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
* \a data pointers.
*
* \see class Map
*/
//@{
inline static const UnalignedMapType Map(const Scalar* data)
{ return UnalignedMapType(data); }
inline static UnalignedMapType Map(Scalar* data)
{ return UnalignedMapType(data); }
inline static const UnalignedMapType Map(const Scalar* data, int size)
{ return UnalignedMapType(data, size); }
inline static UnalignedMapType Map(Scalar* data, int size)
{ return UnalignedMapType(data, size); }
inline static const UnalignedMapType Map(const Scalar* data, int rows, int cols)
{ return UnalignedMapType(data, rows, cols); }
inline static UnalignedMapType Map(Scalar* data, int rows, int cols)
{ return UnalignedMapType(data, rows, cols); }
inline static const AlignedMapType MapAligned(const Scalar* data)
{ return AlignedMapType(data); }
inline static AlignedMapType MapAligned(Scalar* data)
{ return AlignedMapType(data); }
inline static const AlignedMapType MapAligned(const Scalar* data, int size)
{ return AlignedMapType(data, size); }
inline static AlignedMapType MapAligned(Scalar* data, int size)
{ return AlignedMapType(data, size); }
inline static const AlignedMapType MapAligned(const Scalar* data, int rows, int cols)
{ return AlignedMapType(data, rows, cols); }
inline static AlignedMapType MapAligned(Scalar* data, int rows, int cols)
{ return AlignedMapType(data, rows, cols); }
//@}
using Base::setConstant;
Matrix& setConstant(int size, const Scalar& value);
Matrix& setConstant(int rows, int cols, const Scalar& value);
using Base::setZero;
Matrix& setZero(int size);
Matrix& setZero(int rows, int cols);
using Base::setOnes;
Matrix& setOnes(int size);
Matrix& setOnes(int rows, int cols);
using Base::setRandom;
Matrix& setRandom(int size);
Matrix& setRandom(int rows, int cols);
using Base::setIdentity;
Matrix& setIdentity(int rows, int cols);
/////////// Geometry module ///////////
template<typename OtherDerived>
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
// allow to extend Matrix outside Eigen
#ifdef EIGEN_MATRIX_PLUGIN
#include EIGEN_MATRIX_PLUGIN
#endif
private:
/** \internal Resizes *this in preparation for assigning \a other to it.
* Takes care of doing all the checking that's needed.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _resize_to_match(const MatrixBase<OtherDerived>& other)
{
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
ei_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size())
: (rows() == other.rows() && cols() == other.cols())))
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
#endif
resizeLike(other);
}
/** \internal Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& _set(const MatrixBase<OtherDerived>& other)
{
_resize_to_match(other);
return Base::operator=(other);
}
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& _set_noalias(const MatrixBase<OtherDerived>& other)
{
_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
return ei_assign_selector<Matrix,OtherDerived,false>::run(*this, other.derived());
}
static EIGEN_STRONG_INLINE void _check_template_params()
{
EIGEN_STATIC_ASSERT(((_Rows >= _MaxRows)
&& (_Cols >= _MaxCols)
&& (_MaxRows >= 0)
&& (_MaxCols >= 0)
&& (_Rows <= Dynamic)
&& (_Cols <= Dynamic)
&& (_MaxRows == _Rows || _Rows==Dynamic)
&& (_MaxCols == _Cols || _Cols==Dynamic)
&& ((_MaxRows==Dynamic?1:_MaxRows)*(_MaxCols==Dynamic?1:_MaxCols)<Dynamic)
&& (_Options & (DontAlign|RowMajor)) == _Options),
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(int rows, int cols, typename ei_enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
{
ei_assert(rows > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows*cols,rows,cols);
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename ei_enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
};
/** \defgroup matrixtypedefs Global matrix typedefs
*
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common matrix and vector types.
*
* The general patterns are the following:
*
* \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
*
* There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
* a fixed-size vector of 4 complex floats.
*
* \sa class Matrix
*/
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_TYPEDEFS
#undef EIGEN_MAKE_TYPEDEFS_LARGE
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_MATRIX_TYPEDEFS \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
#endif // EIGEN_MATRIX_H
|