aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/MathFunctionsImpl.h
blob: 4eaaaa78449031830cea7446210226afcd2467d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATHFUNCTIONSIMPL_H
#define EIGEN_MATHFUNCTIONSIMPL_H

namespace Eigen {

namespace internal {

/** \internal \returns the hyperbolic tan of \a a (coeff-wise)
    Doesn't do anything fancy, just a 13/6-degree rational interpolant which
    is accurate up to a couple of ulps in the (approximate) range [-8, 8],
    outside of which tanh(x) = +/-1 in single precision. The input is clamped
    to the range [-c, c]. The value c is chosen as the smallest value where
    the approximation evaluates to exactly 1. In the reange [-0.0004, 0.0004]
    the approxmation tanh(x) ~= x is used for better accuracy as x tends to zero.

    This implementation works on both scalars and packets.
*/
template<typename T>
T generic_fast_tanh_float(const T& a_x)
{
  // Clamp the inputs to the range [-c, c]
#ifdef EIGEN_VECTORIZE_FMA
  const T plus_clamp = pset1<T>(7.99881172180175781f);
  const T minus_clamp = pset1<T>(-7.99881172180175781f);
#else
  const T plus_clamp = pset1<T>(7.90531110763549805f);
  const T minus_clamp = pset1<T>(-7.90531110763549805f);
#endif
  const T tiny = pset1<T>(0.0004f);
  const T x = pmax(pmin(a_x, plus_clamp), minus_clamp);
  const T tiny_mask = pcmp_lt(pabs(a_x), tiny);
  // The monomial coefficients of the numerator polynomial (odd).
  const T alpha_1 = pset1<T>(4.89352455891786e-03f);
  const T alpha_3 = pset1<T>(6.37261928875436e-04f);
  const T alpha_5 = pset1<T>(1.48572235717979e-05f);
  const T alpha_7 = pset1<T>(5.12229709037114e-08f);
  const T alpha_9 = pset1<T>(-8.60467152213735e-11f);
  const T alpha_11 = pset1<T>(2.00018790482477e-13f);
  const T alpha_13 = pset1<T>(-2.76076847742355e-16f);

  // The monomial coefficients of the denominator polynomial (even).
  const T beta_0 = pset1<T>(4.89352518554385e-03f);
  const T beta_2 = pset1<T>(2.26843463243900e-03f);
  const T beta_4 = pset1<T>(1.18534705686654e-04f);
  const T beta_6 = pset1<T>(1.19825839466702e-06f);

  // Since the polynomials are odd/even, we need x^2.
  const T x2 = pmul(x, x);

  // Evaluate the numerator polynomial p.
  T p = pmadd(x2, alpha_13, alpha_11);
  p = pmadd(x2, p, alpha_9);
  p = pmadd(x2, p, alpha_7);
  p = pmadd(x2, p, alpha_5);
  p = pmadd(x2, p, alpha_3);
  p = pmadd(x2, p, alpha_1);
  p = pmul(x, p);

  // Evaluate the denominator polynomial q.
  T q = pmadd(x2, beta_6, beta_4);
  q = pmadd(x2, q, beta_2);
  q = pmadd(x2, q, beta_0);

  // Divide the numerator by the denominator.
  return pselect(tiny_mask, x, pdiv(p, q));
}

template<typename RealScalar>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y)
{
  // IEEE IEC 6059 special cases.
  if ((numext::isinf)(x) || (numext::isinf)(y))
    return NumTraits<RealScalar>::infinity();
  if ((numext::isnan)(x) || (numext::isnan)(y))
    return NumTraits<RealScalar>::quiet_NaN();
    
  EIGEN_USING_STD(sqrt);
  RealScalar p, qp;
  p = numext::maxi(x,y);
  if(p==RealScalar(0)) return RealScalar(0);
  qp = numext::mini(y,x) / p;
  return p * sqrt(RealScalar(1) + qp*qp);
}

template<typename Scalar>
struct hypot_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static EIGEN_DEVICE_FUNC
  inline RealScalar run(const Scalar& x, const Scalar& y)
  {
    EIGEN_USING_STD(abs);
    return positive_real_hypot<RealScalar>(abs(x), abs(y));
  }
};

// Generic complex sqrt implementation that correctly handles corner cases
// according to https://en.cppreference.com/w/cpp/numeric/complex/sqrt
template<typename T>
EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& z) {
  // Computes the principal sqrt of the input.
  //
  // For a complex square root of the number x + i*y. We want to find real
  // numbers u and v such that
  //    (u + i*v)^2 = x + i*y  <=>
  //    u^2 - v^2 + i*2*u*v = x + i*v.
  // By equating the real and imaginary parts we get:
  //    u^2 - v^2 = x
  //    2*u*v = y.
  //
  // For x >= 0, this has the numerically stable solution
  //    u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
  //    v = y / (2 * u)
  // and for x < 0,
  //    v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
  //    u = y / (2 * v)
  //
  // Letting w = sqrt(0.5 * (|x| + |z|)),
  //   if x == 0: u = w, v = sign(y) * w
  //   if x > 0:  u = w, v = y / (2 * w)
  //   if x < 0:  u = |y| / (2 * w), v = sign(y) * w

  const T x = numext::real(z);
  const T y = numext::imag(z);
  const T zero = T(0);
  const T w = numext::sqrt(T(0.5) * (numext::abs(x) + numext::hypot(x, y)));

  return
    (numext::isinf)(y) ? std::complex<T>(NumTraits<T>::infinity(), y)
      : x == zero ? std::complex<T>(w, y < zero ? -w : w)
      : x > zero ? std::complex<T>(w, y / (2 * w))
      : std::complex<T>(numext::abs(y) / (2 * w), y < zero ? -w : w );
}

// Generic complex rsqrt implementation.
template<typename T>
EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& z) {
  // Computes the principal reciprocal sqrt of the input.
  //
  // For a complex reciprocal square root of the number z = x + i*y. We want to
  // find real numbers u and v such that
  //    (u + i*v)^2 = 1 / (x + i*y)  <=>
  //    u^2 - v^2 + i*2*u*v = x/|z|^2 - i*v/|z|^2.
  // By equating the real and imaginary parts we get:
  //    u^2 - v^2 = x/|z|^2
  //    2*u*v = y/|z|^2.
  //
  // For x >= 0, this has the numerically stable solution
  //    u = sqrt(0.5 * (x + |z|)) / |z|
  //    v = -y / (2 * u * |z|)
  // and for x < 0,
  //    v = -sign(y) * sqrt(0.5 * (-x + |z|)) / |z|
  //    u = -y / (2 * v * |z|)
  //
  // Letting w = sqrt(0.5 * (|x| + |z|)),
  //   if x == 0: u = w / |z|, v = -sign(y) * w / |z|
  //   if x > 0:  u = w / |z|, v = -y / (2 * w * |z|)
  //   if x < 0:  u = |y| / (2 * w * |z|), v = -sign(y) * w / |z|

  const T x = numext::real(z);
  const T y = numext::imag(z);
  const T zero = T(0);

  const T abs_z = numext::hypot(x, y);
  const T w = numext::sqrt(T(0.5) * (numext::abs(x) + abs_z));
  const T woz = w / abs_z;
  // Corner cases consistent with 1/sqrt(z) on gcc/clang.
  return
    abs_z == zero ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN())
      : ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero)
      : x == zero ? std::complex<T>(woz, y < zero ? woz : -woz)
      : x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z))
      : std::complex<T>(numext::abs(y) / (2 * w * abs_z), y < zero ? woz : -woz );
}

template<typename T>
EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z) {
  // Computes complex log.
  T a = numext::abs(z);
  EIGEN_USING_STD(atan2);
  T b = atan2(z.imag(), z.real());
  return std::complex<T>(numext::log(a), b);
}

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_MATHFUNCTIONSIMPL_H