aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/MathFunctions.h
blob: e8348dd6fdcfa98b0c8bcbb59b5fa6865ae0e717 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.

#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H

template<typename T> inline typename NumTraits<T>::Real precision();
template<typename T> inline T ei_random(T a, T b);
template<typename T> inline T ei_random();

template<> inline int precision<int>() { return 0; }
inline int ei_real(int x)  { return x; }
inline int ei_imag(int)    { return 0; }
inline int ei_conj(int x)  { return x; }
inline int ei_abs(int x)   { return abs(x); }
inline int ei_abs2(int x)  { return x*x; }
inline int ei_sqrt(int)
{
  // Taking the square root of integers is not allowed
  // (the square root does not always exist within the integers).
  // Please cast to a floating-point type.
  assert(false);
  return 0;
}
template<> inline int ei_random(int a, int b)
{
  // We can't just do rand()%n as only the high-order bits are really random
  return a + static_cast<int>((b-a+1) * (rand() / (RAND_MAX + 1.0)));
}
template<> inline int ei_random()
{
  return ei_random<int>(-10, 10);
}
inline bool ei_isMuchSmallerThan(int a, int, int = precision<int>())
{
  return a == 0;
}
inline bool ei_isApprox(int a, int b, int = precision<int>())
{
  return a == b;
}
inline bool ei_isApproxOrLessThan(int a, int b, int = precision<int>())
{
  return a <= b;
}

template<> inline float precision<float>() { return 1e-5f; }
inline float ei_real(float x)  { return x; }
inline float ei_imag(float)    { return 0.f; }
inline float ei_conj(float x)  { return x; }
inline float ei_abs(float x)   { return std::abs(x); }
inline float ei_abs2(float x)  { return x*x; }
inline float ei_sqrt(float x)  { return std::sqrt(x); }
template<> inline float ei_random(float a, float b)
{
  return a + (b-a) * std::rand() / RAND_MAX;
}
template<> inline float ei_random()
{
  return ei_random<float>(-10.0f, 10.0f);
}
inline bool ei_isMuchSmallerThan(float a, float b, float prec = precision<float>())
{
  return ei_abs(a) <= ei_abs(b) * prec;
}
inline bool ei_isApprox(float a, float b, float prec = precision<float>())
{
  return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
}
inline bool ei_isApproxOrLessThan(float a, float b, float prec = precision<float>())
{
  return a <= b || ei_isApprox(a, b, prec);
}

template<> inline double precision<double>() { return 1e-11; }
inline double ei_real(double x)  { return x; }
inline double ei_imag(double)    { return 0.; }
inline double ei_conj(double x)  { return x; }
inline double ei_abs(double x)   { return std::abs(x); }
inline double ei_abs2(double x)  { return x*x; }
inline double ei_sqrt(double x)  { return std::sqrt(x); }
template<> inline double ei_random(double a, double b)
{
  return a + (b-a) * std::rand() / RAND_MAX;
}
template<> inline double ei_random()
{
  return ei_random<double>(-10.0, 10.0);
}
inline bool ei_isMuchSmallerThan(double a, double b, double prec = precision<double>())
{
  return ei_abs(a) <= ei_abs(b) * prec;
}
inline bool ei_isApprox(double a, double b, double prec = precision<double>())
{
  return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
}
inline bool ei_isApproxOrLessThan(double a, double b, double prec = precision<double>())
{
  return a <= b || ei_isApprox(a, b, prec);
}

template<> inline float precision<std::complex<float> >() { return precision<float>(); }
inline float ei_real(const std::complex<float>& x) { return std::real(x); }
inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
inline std::complex<float> ei_conj(const std::complex<float>& x) { return std::conj(x); }
inline float ei_abs(const std::complex<float>& x) { return std::abs(x); }
inline float ei_abs2(const std::complex<float>& x) { return std::norm(x); }
inline std::complex<float> ei_sqrt(const std::complex<float>&)
{
  // Taking the square roots of complex numbers is not allowed,
  // as this is ambiguous (there are two square roots).
  // What were you trying to do?
  assert(false);
  return 0;
}
template<> inline std::complex<float> ei_random()
{
  return std::complex<float>(ei_random<float>(), ei_random<float>());
}
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
{
  return ei_abs2(a) <= ei_abs2(b) * prec * prec;
}
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, float b, float prec = precision<float>())
{
  return ei_abs2(a) <= ei_abs2(b) * prec * prec;
}
inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
{
  return ei_isApprox(ei_real(a), ei_real(b), prec)
      && ei_isApprox(ei_imag(a), ei_imag(b), prec);
}
// ei_isApproxOrLessThan wouldn't make sense for complex numbers

template<> inline double precision<std::complex<double> >() { return precision<double>(); }
inline double ei_real(const std::complex<double>& x) { return std::real(x); }
inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
inline std::complex<double> ei_conj(const std::complex<double>& x) { return std::conj(x); }
inline double ei_abs(const std::complex<double>& x) { return std::abs(x); }
inline double ei_abs2(const std::complex<double>& x) { return std::norm(x); }
template<> inline std::complex<double> ei_random()
{
  return std::complex<double>(ei_random<double>(), ei_random<double>());
}
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
{
  return ei_abs2(a) <= ei_abs2(b) * prec * prec;
}
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, double b, double prec = precision<double>())
{
  return ei_abs2(a) <= ei_abs2(b) * prec * prec;
}
inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
{
  return ei_isApprox(ei_real(a), ei_real(b), prec)
      && ei_isApprox(ei_imag(a), ei_imag(b), prec);
}
// ei_isApproxOrLessThan wouldn't make sense for complex numbers

#define EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(T,U) \
inline std::complex<T> operator*(U a, const std::complex<T>& b) \
{ \
  return std::complex<T>(static_cast<T>(a)*b.real(), \
                         static_cast<T>(a)*b.imag()); \
} \
inline std::complex<T> operator*(const std::complex<T>& b, U a) \
{ \
  return std::complex<T>(static_cast<T>(a)*b.real(), \
                         static_cast<T>(a)*b.imag()); \
}

EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(int,    float)
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(int,    double)
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(float,  double)
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(double, float)

#endif // EIGEN_MATHFUNCTIONS_H