aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/GeneralProduct.h
blob: 6906aa75d106c4b2ccb12e0848d4d42b5ecc9e9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GENERAL_PRODUCT_H
#define EIGEN_GENERAL_PRODUCT_H

namespace Eigen {

enum {
  Large = 2,
  Small = 3
};

// Define the threshold value to fallback from the generic matrix-matrix product
// implementation (heavy) to the lightweight coeff-based product one.
// See generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
// in products/GeneralMatrixMatrix.h for more details.
// TODO This threshold should also be used in the compile-time selector below.
#ifndef EIGEN_GEMM_TO_COEFFBASED_THRESHOLD
// This default value has been obtained on a Haswell architecture.
#define EIGEN_GEMM_TO_COEFFBASED_THRESHOLD 20
#endif

namespace internal {

template<int Rows, int Cols, int Depth> struct product_type_selector;

template<int Size, int MaxSize> struct product_size_category
{
  enum {
    #ifndef EIGEN_GPU_COMPILE_PHASE
    is_large = MaxSize == Dynamic ||
               Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD ||
               (Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD),
    #else
    is_large = 0,
    #endif
    value = is_large  ? Large
          : Size == 1 ? 1
                      : Small
  };
};

template<typename Lhs, typename Rhs> struct product_type
{
  typedef typename remove_all<Lhs>::type _Lhs;
  typedef typename remove_all<Rhs>::type _Rhs;
  enum {
    MaxRows = traits<_Lhs>::MaxRowsAtCompileTime,
    Rows    = traits<_Lhs>::RowsAtCompileTime,
    MaxCols = traits<_Rhs>::MaxColsAtCompileTime,
    Cols    = traits<_Rhs>::ColsAtCompileTime,
    MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime,
                                           traits<_Rhs>::MaxRowsAtCompileTime),
    Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime,
                                        traits<_Rhs>::RowsAtCompileTime)
  };

  // the splitting into different lines of code here, introducing the _select enums and the typedef below,
  // is to work around an internal compiler error with gcc 4.1 and 4.2.
private:
  enum {
    rows_select = product_size_category<Rows,MaxRows>::value,
    cols_select = product_size_category<Cols,MaxCols>::value,
    depth_select = product_size_category<Depth,MaxDepth>::value
  };
  typedef product_type_selector<rows_select, cols_select, depth_select> selector;

public:
  enum {
    value = selector::ret,
    ret = selector::ret
  };
#ifdef EIGEN_DEBUG_PRODUCT
  static void debug()
  {
      EIGEN_DEBUG_VAR(Rows);
      EIGEN_DEBUG_VAR(Cols);
      EIGEN_DEBUG_VAR(Depth);
      EIGEN_DEBUG_VAR(rows_select);
      EIGEN_DEBUG_VAR(cols_select);
      EIGEN_DEBUG_VAR(depth_select);
      EIGEN_DEBUG_VAR(value);
  }
#endif
};

/* The following allows to select the kind of product at compile time
 * based on the three dimensions of the product.
 * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N>  struct product_type_selector<M,N,1>              { enum { ret = OuterProduct }; };
template<int M>         struct product_type_selector<M, 1, 1>            { enum { ret = LazyCoeffBasedProductMode }; };
template<int N>         struct product_type_selector<1, N, 1>            { enum { ret = LazyCoeffBasedProductMode }; };
template<int Depth>     struct product_type_selector<1,    1,    Depth>  { enum { ret = InnerProduct }; };
template<>              struct product_type_selector<1,    1,    1>      { enum { ret = InnerProduct }; };
template<>              struct product_type_selector<Small,1,    Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<1,    Small,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small,Small,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small, Small, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
template<>              struct product_type_selector<Small, Large, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
template<>              struct product_type_selector<Large, Small, 1>    { enum { ret = LazyCoeffBasedProductMode }; };
template<>              struct product_type_selector<1,    Large,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<1,    Large,Large>  { enum { ret = GemvProduct }; };
template<>              struct product_type_selector<1,    Small,Large>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Large,1,    Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Large,1,    Large>  { enum { ret = GemvProduct }; };
template<>              struct product_type_selector<Small,1,    Large>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small,Small,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Small,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Small,Large,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Large,Large>  { enum { ret = GemmProduct }; };
template<>              struct product_type_selector<Large,Small,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Small,Large,Small>  { enum { ret = CoeffBasedProductMode }; };
template<>              struct product_type_selector<Large,Large,Small>  { enum { ret = GemmProduct }; };

} // end namespace internal

/***********************************************************************
*  Implementation of Inner Vector Vector Product
***********************************************************************/

// FIXME : maybe the "inner product" could return a Scalar
// instead of a 1x1 matrix ??
// Pro: more natural for the user
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);

/***********************************************************************
*  Implementation of Outer Vector Vector Product
***********************************************************************/

/***********************************************************************
*  Implementation of General Matrix Vector Product
***********************************************************************/

/*  According to the shape/flags of the matrix we have to distinghish 3 different cases:
 *   1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
 *   2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
 *   3 - all other cases are handled using a simple loop along the outer-storage direction.
 *  Therefore we need a lower level meta selector.
 *  Furthermore, if the matrix is the rhs, then the product has to be transposed.
 */
namespace internal {

template<int Side, int StorageOrder, bool BlasCompatible>
struct gemv_dense_selector;

} // end namespace internal

namespace internal {

template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;

template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
{
  EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
};

template<typename Scalar,int Size>
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
{
  EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Scalar* data() { return 0; }
};

template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
{
  enum {
    ForceAlignment  = internal::packet_traits<Scalar>::Vectorizable,
    PacketSize      = internal::packet_traits<Scalar>::size
  };
  #if EIGEN_MAX_STATIC_ALIGN_BYTES!=0
  internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data;
  EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
  #else
  // Some architectures cannot align on the stack,
  // => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
  internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data;
  EIGEN_STRONG_INLINE Scalar* data() {
    return ForceAlignment
            ? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES)
            : m_data.array;
  }
  #endif
};

// The vector is on the left => transposition
template<int StorageOrder, bool BlasCompatible>
struct gemv_dense_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
  template<typename Lhs, typename Rhs, typename Dest>
  static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
  {
    Transpose<Dest> destT(dest);
    enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
    gemv_dense_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
      ::run(rhs.transpose(), lhs.transpose(), destT, alpha);
  }
};

template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
{
  template<typename Lhs, typename Rhs, typename Dest>
  static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
  {
    typedef typename Lhs::Scalar   LhsScalar;
    typedef typename Rhs::Scalar   RhsScalar;
    typedef typename Dest::Scalar  ResScalar;
    typedef typename Dest::RealScalar  RealScalar;
    
    typedef internal::blas_traits<Lhs> LhsBlasTraits;
    typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
    typedef internal::blas_traits<Rhs> RhsBlasTraits;
    typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
  
    typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest;

    ActualLhsType actualLhs = LhsBlasTraits::extract(lhs);
    ActualRhsType actualRhs = RhsBlasTraits::extract(rhs);

    ResScalar actualAlpha = combine_scalar_factors(alpha, lhs, rhs);

    // make sure Dest is a compile-time vector type (bug 1166)
    typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest;

    enum {
      // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
      // on, the other hand it is good for the cache to pack the vector anyways...
      EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1),
      ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
      MightCannotUseDest = ((!EvalToDestAtCompileTime) || ComplexByReal) && (ActualDest::MaxSizeAtCompileTime!=0)
    };

    typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper;
    typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper;
    RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);

    if(!MightCannotUseDest)
    {
      // shortcut if we are sure to be able to use dest directly,
      // this ease the compiler to generate cleaner and more optimzized code for most common cases
      general_matrix_vector_product
          <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
          actualLhs.rows(), actualLhs.cols(),
          LhsMapper(actualLhs.data(), actualLhs.outerStride()),
          RhsMapper(actualRhs.data(), actualRhs.innerStride()),
          dest.data(), 1,
          compatibleAlpha);
    }
    else
    {
      gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;

      const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
      const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;

      ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
                                                    evalToDest ? dest.data() : static_dest.data());

      if(!evalToDest)
      {
        #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
        Index size = dest.size();
        EIGEN_DENSE_STORAGE_CTOR_PLUGIN
        #endif
        if(!alphaIsCompatible)
        {
          MappedDest(actualDestPtr, dest.size()).setZero();
          compatibleAlpha = RhsScalar(1);
        }
        else
          MappedDest(actualDestPtr, dest.size()) = dest;
      }

      general_matrix_vector_product
          <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
          actualLhs.rows(), actualLhs.cols(),
          LhsMapper(actualLhs.data(), actualLhs.outerStride()),
          RhsMapper(actualRhs.data(), actualRhs.innerStride()),
          actualDestPtr, 1,
          compatibleAlpha);

      if (!evalToDest)
      {
        if(!alphaIsCompatible)
          dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size());
        else
          dest = MappedDest(actualDestPtr, dest.size());
      }
    }
  }
};

template<> struct gemv_dense_selector<OnTheRight,RowMajor,true>
{
  template<typename Lhs, typename Rhs, typename Dest>
  static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
  {
    typedef typename Lhs::Scalar   LhsScalar;
    typedef typename Rhs::Scalar   RhsScalar;
    typedef typename Dest::Scalar  ResScalar;
    
    typedef internal::blas_traits<Lhs> LhsBlasTraits;
    typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
    typedef internal::blas_traits<Rhs> RhsBlasTraits;
    typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
    typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;

    typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
    typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);

    ResScalar actualAlpha = combine_scalar_factors(alpha, lhs, rhs);

    enum {
      // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
      // on, the other hand it is good for the cache to pack the vector anyways...
      DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1 || ActualRhsTypeCleaned::MaxSizeAtCompileTime==0
    };

    gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;

    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
        DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());

    if(!DirectlyUseRhs)
    {
      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      Index size = actualRhs.size();
      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
      #endif
      Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
    }

    typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper;
    typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper;
    general_matrix_vector_product
        <Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
        actualLhs.rows(), actualLhs.cols(),
        LhsMapper(actualLhs.data(), actualLhs.outerStride()),
        RhsMapper(actualRhsPtr, 1),
        dest.data(), dest.col(0).innerStride(), //NOTE  if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166)
        actualAlpha);
  }
};

template<> struct gemv_dense_selector<OnTheRight,ColMajor,false>
{
  template<typename Lhs, typename Rhs, typename Dest>
  static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
  {
    EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
    // TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp
    typename nested_eval<Rhs,1>::type actual_rhs(rhs);
    const Index size = rhs.rows();
    for(Index k=0; k<size; ++k)
      dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k);
  }
};

template<> struct gemv_dense_selector<OnTheRight,RowMajor,false>
{
  template<typename Lhs, typename Rhs, typename Dest>
  static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
  {
    EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
    typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs);
    const Index rows = dest.rows();
    for(Index i=0; i<rows; ++i)
      dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum();
  }
};

} // end namespace internal

/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/

/** \returns the matrix product of \c *this and \a other.
  *
  * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
  *
  * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
  */
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Product<Derived, OtherDerived>
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
  // A note regarding the function declaration: In MSVC, this function will sometimes
  // not be inlined since DenseStorage is an unwindable object for dynamic
  // matrices and product types are holding a member to store the result.
  // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
  enum {
    ProductIsValid =  Derived::ColsAtCompileTime==Dynamic
                   || OtherDerived::RowsAtCompileTime==Dynamic
                   || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
    AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
    SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
  };
  // note to the lost user:
  //    * for a dot product use: v1.dot(v2)
  //    * for a coeff-wise product use: v1.cwiseProduct(v2)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
    INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
    INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
#ifdef EIGEN_DEBUG_PRODUCT
  internal::product_type<Derived,OtherDerived>::debug();
#endif

  return Product<Derived, OtherDerived>(derived(), other.derived());
}

/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
  *
  * The returned product will behave like any other expressions: the coefficients of the product will be
  * computed once at a time as requested. This might be useful in some extremely rare cases when only
  * a small and no coherent fraction of the result's coefficients have to be computed.
  *
  * \warning This version of the matrix product can be much much slower. So use it only if you know
  * what you are doing and that you measured a true speed improvement.
  *
  * \sa operator*(const MatrixBase&)
  */
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Product<Derived,OtherDerived,LazyProduct>
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
  enum {
    ProductIsValid =  Derived::ColsAtCompileTime==Dynamic
                   || OtherDerived::RowsAtCompileTime==Dynamic
                   || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
    AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
    SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
  };
  // note to the lost user:
  //    * for a dot product use: v1.dot(v2)
  //    * for a coeff-wise product use: v1.cwiseProduct(v2)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
    INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
    INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)

  return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived());
}

} // end namespace Eigen

#endif // EIGEN_PRODUCT_H