1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_FUZZY_H
#define EIGEN_FUZZY_H
#ifndef EIGEN_LEGACY_COMPARES
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
* are considered to be approximately equal within precision \f$ p \f$ if
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
* L2 norm).
*
* \note Because of the multiplicativeness of this comparison, one can't use this function
* to check whether \c *this is approximately equal to the zero matrix or vector.
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
* or vector. If you want to test whether \c *this is zero, use ei_isMuchSmallerThan(const
* RealScalar&, RealScalar) instead.
*
* \sa ei_isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isApprox(
const MatrixBase<OtherDerived>& other,
typename NumTraits<Scalar>::Real prec
) const
{
const typename ei_nested<Derived,2>::type nested(derived());
const typename ei_nested<OtherDerived,2>::type otherNested(other.derived());
return (nested - otherNested).cwise().abs2().sum() <= prec * prec * std::min(nested.cwise().abs2().sum(), otherNested.cwise().abs2().sum());
}
/** \returns \c true if the norm of \c *this is much smaller than \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
*
* For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
* the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
* of a reference matrix of same dimensions.
*
* \sa isApprox(), isMuchSmallerThan(const MatrixBase<OtherDerived>&, RealScalar) const
*/
template<typename Derived>
bool MatrixBase<Derived>::isMuchSmallerThan(
const typename NumTraits<Scalar>::Real& other,
typename NumTraits<Scalar>::Real prec
) const
{
return cwise().abs2().sum() <= prec * prec * other * other;
}
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm.
*
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isMuchSmallerThan(
const MatrixBase<OtherDerived>& other,
typename NumTraits<Scalar>::Real prec
) const
{
return this->cwise().abs2().sum() <= prec * prec * other.cwise().abs2().sum();
}
#else
template<typename Derived, typename OtherDerived=Derived, bool IsVector=Derived::IsVectorAtCompileTime>
struct ei_fuzzy_selector;
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
* are considered to be approximately equal within precision \f$ p \f$ if
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
* For matrices, the comparison is done on all columns.
*
* \note Because of the multiplicativeness of this comparison, one can't use this function
* to check whether \c *this is approximately equal to the zero matrix or vector.
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
* or vector. If you want to test whether \c *this is zero, use ei_isMuchSmallerThan(const
* RealScalar&, RealScalar) instead.
*
* \sa ei_isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isApprox(
const MatrixBase<OtherDerived>& other,
typename NumTraits<Scalar>::Real prec
) const
{
return ei_fuzzy_selector<Derived,OtherDerived>::isApprox(derived(), other.derived(), prec);
}
/** \returns \c true if the norm of \c *this is much smaller than \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
* For matrices, the comparison is done on all columns.
*
* \sa isApprox(), isMuchSmallerThan(const MatrixBase<OtherDerived>&, RealScalar) const
*/
template<typename Derived>
bool MatrixBase<Derived>::isMuchSmallerThan(
const typename NumTraits<Scalar>::Real& other,
typename NumTraits<Scalar>::Real prec
) const
{
return ei_fuzzy_selector<Derived>::isMuchSmallerThan(derived(), other, prec);
}
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
* For matrices, the comparison is done on all columns.
*
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isMuchSmallerThan(
const MatrixBase<OtherDerived>& other,
typename NumTraits<Scalar>::Real prec
) const
{
return ei_fuzzy_selector<Derived,OtherDerived>::isMuchSmallerThan(derived(), other.derived(), prec);
}
template<typename Derived, typename OtherDerived>
struct ei_fuzzy_selector<Derived,OtherDerived,true>
{
typedef typename Derived::RealScalar RealScalar;
static bool isApprox(const Derived& self, const OtherDerived& other, RealScalar prec)
{
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
ei_assert(self.size() == other.size());
return((self - other).norm2() <= std::min(self.norm2(), other.norm2()) * prec * prec);
}
static bool isMuchSmallerThan(const Derived& self, const RealScalar& other, RealScalar prec)
{
return(self.norm2() <= ei_abs2(other * prec));
}
static bool isMuchSmallerThan(const Derived& self, const OtherDerived& other, RealScalar prec)
{
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
ei_assert(self.size() == other.size());
return(self.norm2() <= other.norm2() * prec * prec);
}
};
template<typename Derived, typename OtherDerived>
struct ei_fuzzy_selector<Derived,OtherDerived,false>
{
typedef typename Derived::RealScalar RealScalar;
static bool isApprox(const Derived& self, const OtherDerived& other, RealScalar prec)
{
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived);
ei_assert(self.rows() == other.rows() && self.cols() == other.cols());
typename Derived::Nested nested(self);
typename OtherDerived::Nested otherNested(other);
for(int i = 0; i < self.cols(); i++)
if((nested.col(i) - otherNested.col(i)).norm2()
> std::min(nested.col(i).norm2(), otherNested.col(i).norm2()) * prec * prec)
return false;
return true;
}
static bool isMuchSmallerThan(const Derived& self, const RealScalar& other, RealScalar prec)
{
typename Derived::Nested nested(self);
for(int i = 0; i < self.cols(); i++)
if(nested.col(i).norm2() > ei_abs2(other * prec))
return false;
return true;
}
static bool isMuchSmallerThan(const Derived& self, const OtherDerived& other, RealScalar prec)
{
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived);
ei_assert(self.rows() == other.rows() && self.cols() == other.cols());
typename Derived::Nested nested(self);
typename OtherDerived::Nested otherNested(other);
for(int i = 0; i < self.cols(); i++)
if(nested.col(i).norm2() > otherNested.col(i).norm2() * prec * prec)
return false;
return true;
}
};
#endif
#endif // EIGEN_FUZZY_H
|