aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Functors.h
blob: 052bcc35cada1d6d96cabee9b860060e00866ce3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_FUNCTORS_H
#define EIGEN_FUNCTORS_H

// associative functors:

/** \internal
  * \brief Template functor to compute the sum of two scalars
  *
  * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
  */
template<typename Scalar> struct ei_scalar_sum_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sum_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return ei_padd(a,b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
  { return ei_predux(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sum_op<Scalar> > {
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = ei_packet_traits<Scalar>::HasAdd
  };
};

/** \internal
  * \brief Template functor to compute the product of two scalars
  *
  * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
  */
template<typename LhsScalar,typename RhsScalar> struct ei_scalar_product_op {
  enum {
    Vectorizable = ei_is_same_type<LhsScalar,RhsScalar>::ret && ei_packet_traits<LhsScalar>::HasMul && ei_packet_traits<RhsScalar>::HasMul
  };
  typedef typename ei_scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_product_op)
  EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return ei_pmul(a,b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
  { return ei_predux_mul(a); }
};
template<typename LhsScalar,typename RhsScalar>
struct ei_functor_traits<ei_scalar_product_op<LhsScalar,RhsScalar> > {
  enum {
    Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
    PacketAccess = ei_scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
  };
};

/** \internal
  * \brief Template functor to compute the conjugate product of two scalars
  *
  * This is a short cut for ei_conj(x) * y which is needed for optimization purpose
  */
template<typename Scalar> struct ei_scalar_conj_product_op {
  enum { Conj = NumTraits<Scalar>::IsComplex };
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_conj_product_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const
  { return ei_conj_helper<Scalar,Scalar,Conj,false>().pmul(a,b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return ei_conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_conj_product_op<Scalar> > {
  enum {
    Cost = NumTraits<Scalar>::MulCost,
    PacketAccess = ei_packet_traits<Scalar>::HasMul
  };
};

/** \internal
  * \brief Template functor to compute the min of two scalars
  *
  * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
  */
template<typename Scalar> struct ei_scalar_min_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_min_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return ei_pmin(a,b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
  { return ei_predux_min(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_min_op<Scalar> > {
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = ei_packet_traits<Scalar>::HasMin
  };
};

/** \internal
  * \brief Template functor to compute the max of two scalars
  *
  * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
  */
template<typename Scalar> struct ei_scalar_max_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_max_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return ei_pmax(a,b); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
  { return ei_predux_max(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_max_op<Scalar> > {
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = ei_packet_traits<Scalar>::HasMax
  };
};

/** \internal
  * \brief Template functor to compute the hypot of two scalars
  *
  * \sa MatrixBase::stableNorm(), class Redux
  */
template<typename Scalar> struct ei_scalar_hypot_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_hypot_op)
//   typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
  {
    Scalar p = std::max(_x, _y);
    Scalar q = std::min(_x, _y);
    Scalar qp = q/p;
    return p * ei_sqrt(Scalar(1) + qp*qp);
  }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_hypot_op<Scalar> > {
  enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
};

// other binary functors:

/** \internal
  * \brief Template functor to compute the difference of two scalars
  *
  * \sa class CwiseBinaryOp, MatrixBase::operator-
  */
template<typename Scalar> struct ei_scalar_difference_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_difference_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return ei_psub(a,b); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_difference_op<Scalar> > {
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = ei_packet_traits<Scalar>::HasSub
  };
};

/** \internal
  * \brief Template functor to compute the quotient of two scalars
  *
  * \sa class CwiseBinaryOp, Cwise::operator/()
  */
template<typename Scalar> struct ei_scalar_quotient_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_quotient_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
  { return ei_pdiv(a,b); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_quotient_op<Scalar> > {
  enum {
    Cost = 2 * NumTraits<Scalar>::MulCost,
    PacketAccess = ei_packet_traits<Scalar>::HasDiv
  };
};

// unary functors:

/** \internal
  * \brief Template functor to compute the opposite of a scalar
  *
  * \sa class CwiseUnaryOp, MatrixBase::operator-
  */
template<typename Scalar> struct ei_scalar_opposite_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_opposite_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return ei_pnegate(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_opposite_op<Scalar> >
{ enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = ei_packet_traits<Scalar>::HasNegate };
};

/** \internal
  * \brief Template functor to compute the absolute value of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::abs
  */
template<typename Scalar> struct ei_scalar_abs_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_abs_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs(a); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return ei_pabs(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_abs_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = ei_packet_traits<Scalar>::HasAbs
  };
};

/** \internal
  * \brief Template functor to compute the squared absolute value of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::abs2
  */
template<typename Scalar> struct ei_scalar_abs2_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_abs2_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs2(a); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return ei_pmul(a,a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_abs2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasAbs2 }; };

/** \internal
  * \brief Template functor to compute the conjugate of a complex value
  *
  * \sa class CwiseUnaryOp, MatrixBase::conjugate()
  */
template<typename Scalar> struct ei_scalar_conjugate_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_conjugate_op)
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return ei_conj(a); }
  template<typename Packet>
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return ei_pconj(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_conjugate_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
    PacketAccess = ei_packet_traits<Scalar>::HasConj
  };
};

/** \internal
  * \brief Template functor to cast a scalar to another type
  *
  * \sa class CwiseUnaryOp, MatrixBase::cast()
  */
template<typename Scalar, typename NewType>
struct ei_scalar_cast_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cast_op)
  typedef NewType result_type;
  EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return ei_cast<Scalar, NewType>(a); }
};
template<typename Scalar, typename NewType>
struct ei_functor_traits<ei_scalar_cast_op<Scalar,NewType> >
{ enum { Cost = ei_is_same_type<Scalar, NewType>::ret ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the real part of a complex
  *
  * \sa class CwiseUnaryOp, MatrixBase::real()
  */
template<typename Scalar>
struct ei_scalar_real_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_real_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_real(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_real_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the imaginary part of a complex
  *
  * \sa class CwiseUnaryOp, MatrixBase::imag()
  */
template<typename Scalar>
struct ei_scalar_imag_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_imag_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_imag(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the real part of a complex as a reference
  *
  * \sa class CwiseUnaryOp, MatrixBase::real()
  */
template<typename Scalar>
struct ei_scalar_real_ref_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_real_ref_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return ei_real_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_real_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the imaginary part of a complex as a reference
  *
  * \sa class CwiseUnaryOp, MatrixBase::imag()
  */
template<typename Scalar>
struct ei_scalar_imag_ref_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_imag_ref_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return ei_imag_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_imag_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  *
  * \brief Template functor to compute the exponential of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::exp()
  */
template<typename Scalar> struct ei_scalar_exp_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_exp_op)
  inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
  typedef typename ei_packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return ei_pexp(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasExp }; };

/** \internal
  *
  * \brief Template functor to compute the logarithm of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::log()
  */
template<typename Scalar> struct ei_scalar_log_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_log_op)
  inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
  typedef typename ei_packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return ei_plog(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasLog }; };

/** \internal
  * \brief Template functor to multiply a scalar by a fixed other one
  *
  * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
  */
/* NOTE why doing the ei_pset1() in packetOp *is* an optimization ?
 * indeed it seems better to declare m_other as a Packet and do the ei_pset1() once
 * in the constructor. However, in practice:
 *  - GCC does not like m_other as a Packet and generate a load every time it needs it
 *  - on the other hand GCC is able to moves the ei_pset1() away the loop :)
 *  - simpler code ;)
 * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
 */
template<typename Scalar>
struct ei_scalar_multiple_op {
  typedef typename ei_packet_traits<Scalar>::type Packet;
  // FIXME default copy constructors seems bugged with std::complex<>
  EIGEN_STRONG_INLINE ei_scalar_multiple_op(const ei_scalar_multiple_op& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE ei_scalar_multiple_op(const Scalar& other) : m_other(other) { }
  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return ei_pmul(a, ei_pset1<Packet>(m_other)); }
  typename ei_makeconst<typename NumTraits<Scalar>::Nested>::type m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_multiple_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasMul }; };

template<typename Scalar1, typename Scalar2>
struct ei_scalar_multiple2_op {
  typedef typename ei_scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
  EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const ei_scalar_multiple2_op& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
  EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
  typename ei_makeconst<typename NumTraits<Scalar2>::Nested>::type m_other;
};
template<typename Scalar1,typename Scalar2>
struct ei_functor_traits<ei_scalar_multiple2_op<Scalar1,Scalar2> >
{ enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };

template<typename Scalar, bool IsInteger>
struct ei_scalar_quotient1_impl {
  typedef typename ei_packet_traits<Scalar>::type Packet;
  // FIXME default copy constructors seems bugged with std::complex<>
  EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return ei_pmul(a, ei_pset1<Packet>(m_other)); }
  const Scalar m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,false> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasMul }; };

template<typename Scalar>
struct ei_scalar_quotient1_impl<Scalar,true> {
  // FIXME default copy constructors seems bugged with std::complex<>
  EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
  typename ei_makeconst<typename NumTraits<Scalar>::Nested>::type m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,true> >
{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };

/** \internal
  * \brief Template functor to divide a scalar by a fixed other one
  *
  * This functor is used to implement the quotient of a matrix by
  * a scalar where the scalar type is not necessarily a floating point type.
  *
  * \sa class CwiseUnaryOp, MatrixBase::operator/
  */
template<typename Scalar>
struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger > {
  EIGEN_STRONG_INLINE ei_scalar_quotient1_op(const Scalar& other)
    : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger >(other) {}
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_quotient1_op<Scalar> >
: ei_functor_traits<ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger> >
{};

// nullary functors

template<typename Scalar>
struct ei_scalar_constant_op {
  typedef typename ei_packet_traits<Scalar>::type Packet;
  EIGEN_STRONG_INLINE ei_scalar_constant_op(const ei_scalar_constant_op& other) : m_other(other.m_other) { }
  EIGEN_STRONG_INLINE ei_scalar_constant_op(const Scalar& other) : m_other(other) { }
  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return ei_pset1<Packet>(m_other); }
  const Scalar m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_constant_op<Scalar> >
// FIXME replace this packet test by a safe one
{ enum { Cost = 1, PacketAccess = ei_packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };

template<typename Scalar> struct ei_scalar_identity_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_identity_op)
  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_identity_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };

template <typename Scalar, bool RandomAccess> struct ei_linspaced_op_impl;

// linear access for packet ops:
// 1) initialization
//   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
// 2) each step
//   base += [size*step, ..., size*step]
template <typename Scalar>
struct ei_linspaced_op_impl<Scalar,false>
{
  typedef typename ei_packet_traits<Scalar>::type Packet;

  ei_linspaced_op_impl(Scalar low, Scalar step) :
  m_low(low), m_step(step),
  m_packetStep(ei_pset1<Packet>(ei_packet_traits<Scalar>::size*step)),
  m_base(ei_padd(ei_pset1<Packet>(low),ei_pmul(ei_pset1<Packet>(step),ei_plset<Scalar>(-ei_packet_traits<Scalar>::size)))) {}

  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = ei_padd(m_base,m_packetStep); }

  const Scalar m_low;
  const Scalar m_step;
  const Packet m_packetStep;
  mutable Packet m_base;
};

// random access for packet ops:
// 1) each step
//   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
template <typename Scalar>
struct ei_linspaced_op_impl<Scalar,true>
{
  typedef typename ei_packet_traits<Scalar>::type Packet;

  ei_linspaced_op_impl(Scalar low, Scalar step) :
  m_low(low), m_step(step),
  m_lowPacket(ei_pset1<Packet>(m_low)), m_stepPacket(ei_pset1<Packet>(m_step)), m_interPacket(ei_plset<Scalar>(0)) {}

  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }

  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
  { return ei_padd(m_lowPacket, ei_pmul(m_stepPacket, ei_padd(ei_pset1<Packet>(i),m_interPacket))); }

  const Scalar m_low;
  const Scalar m_step;
  const Packet m_lowPacket;
  const Packet m_stepPacket;
  const Packet m_interPacket;
};

// ----- Linspace functor ----------------------------------------------------------------

// Forward declaration (we default to random access which does not really give
// us a speed gain when using packet access but it allows to use the functor in
// nested expressions).
template <typename Scalar, bool RandomAccess = true> struct ei_linspaced_op;
template <typename Scalar, bool RandomAccess> struct ei_functor_traits< ei_linspaced_op<Scalar,RandomAccess> >
{ enum { Cost = 1, PacketAccess = ei_packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
template <typename Scalar, bool RandomAccess> struct ei_linspaced_op
{
  typedef typename ei_packet_traits<Scalar>::type Packet;
  ei_linspaced_op(Scalar low, Scalar high, int num_steps) : impl(low, (high-low)/(num_steps-1)) {}

  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }

  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
  // there row==0 and col is used for the actual iteration.
  template<typename Index>
  EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const 
  {
    ei_assert(col==0 || row==0);
    return impl(col + row);
  }

  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }

  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
  // there row==0 and col is used for the actual iteration.
  template<typename Index>
  EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
  {
    ei_assert(col==0 || row==0);
    return impl(col + row);
  }

  // This proxy object handles the actual required temporaries, the different
  // implementations (random vs. sequential access) as well as the
  // correct piping to size 2/4 packet operations.
  const ei_linspaced_op_impl<Scalar,RandomAccess> impl;
};

// all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta
// to indicate whether a functor allows linear access, just always answering 'yes' except for
// ei_scalar_identity_op.
// FIXME move this to ei_functor_traits adding a ei_functor_default
template<typename Functor> struct ei_functor_has_linear_access { enum { ret = 1 }; };
template<typename Scalar> struct ei_functor_has_linear_access<ei_scalar_identity_op<Scalar> > { enum { ret = 0 }; };

// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
// FIXME move this to ei_functor_traits adding a ei_functor_default
template<typename Functor> struct ei_functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
template<typename LhsScalar,typename RhsScalar> struct ei_functor_allows_mixing_real_and_complex<ei_scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };


/** \internal
  * \brief Template functor to add a scalar to a fixed other one
  * \sa class CwiseUnaryOp, Array::operator+
  */
/* If you wonder why doing the ei_pset1() in packetOp() is an optimization check ei_scalar_multiple_op */
template<typename Scalar>
struct ei_scalar_add_op {
  typedef typename ei_packet_traits<Scalar>::type Packet;
  // FIXME default copy constructors seems bugged with std::complex<>
  inline ei_scalar_add_op(const ei_scalar_add_op& other) : m_other(other.m_other) { }
  inline ei_scalar_add_op(const Scalar& other) : m_other(other) { }
  inline Scalar operator() (const Scalar& a) const { return a + m_other; }
  inline const Packet packetOp(const Packet& a) const
  { return ei_padd(a, ei_pset1<Packet>(m_other)); }
  const Scalar m_other;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_add_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = ei_packet_traits<Scalar>::HasAdd }; };

/** \internal
  * \brief Template functor to compute the square root of a scalar
  * \sa class CwiseUnaryOp, Cwise::sqrt()
  */
template<typename Scalar> struct ei_scalar_sqrt_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sqrt_op)
  inline const Scalar operator() (const Scalar& a) const { return ei_sqrt(a); }
  typedef typename ei_packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return ei_psqrt(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sqrt_op<Scalar> >
{ enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = ei_packet_traits<Scalar>::HasSqrt
  };
};

/** \internal
  * \brief Template functor to compute the cosine of a scalar
  * \sa class CwiseUnaryOp, Cwise::cos()
  */
template<typename Scalar> struct ei_scalar_cos_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cos_op)
  inline Scalar operator() (const Scalar& a) const { return ei_cos(a); }
  typedef typename ei_packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return ei_pcos(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_cos_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = ei_packet_traits<Scalar>::HasCos
  };
};

/** \internal
  * \brief Template functor to compute the sine of a scalar
  * \sa class CwiseUnaryOp, Cwise::sin()
  */
template<typename Scalar> struct ei_scalar_sin_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sin_op)
  inline const Scalar operator() (const Scalar& a) const { return ei_sin(a); }
  typedef typename ei_packet_traits<Scalar>::type Packet;
  inline Packet packetOp(const Packet& a) const { return ei_psin(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_sin_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = ei_packet_traits<Scalar>::HasSin
  };
};

/** \internal
  * \brief Template functor to raise a scalar to a power
  * \sa class CwiseUnaryOp, Cwise::pow
  */
template<typename Scalar>
struct ei_scalar_pow_op {
  // FIXME default copy constructors seems bugged with std::complex<>
  inline ei_scalar_pow_op(const ei_scalar_pow_op& other) : m_exponent(other.m_exponent) { }
  inline ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
  inline Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); }
  const Scalar m_exponent;
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_pow_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };

/** \internal
  * \brief Template functor to compute the inverse of a scalar
  * \sa class CwiseUnaryOp, Cwise::inverse()
  */
template<typename Scalar>
struct ei_scalar_inverse_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_inverse_op)
  inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
  template<typename Packet>
  inline const Packet packetOp(const Packet& a) const
  { return ei_pdiv(ei_pset1<Packet>(Scalar(1)),a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_inverse_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasDiv }; };

/** \internal
  * \brief Template functor to compute the square of a scalar
  * \sa class CwiseUnaryOp, Cwise::square()
  */
template<typename Scalar>
struct ei_scalar_square_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_square_op)
  inline Scalar operator() (const Scalar& a) const { return a*a; }
  template<typename Packet>
  inline const Packet packetOp(const Packet& a) const
  { return ei_pmul(a,a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_square_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasMul }; };

/** \internal
  * \brief Template functor to compute the cube of a scalar
  * \sa class CwiseUnaryOp, Cwise::cube()
  */
template<typename Scalar>
struct ei_scalar_cube_op {
  EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cube_op)
  inline Scalar operator() (const Scalar& a) const { return a*a*a; }
  template<typename Packet>
  inline const Packet packetOp(const Packet& a) const
  { return ei_pmul(a,ei_pmul(a,a)); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasMul }; };

// default functor traits for STL functors:

template<typename T>
struct ei_functor_traits<std::multiplies<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::divides<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::plus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::minus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::negate<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::logical_or<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::logical_and<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::logical_not<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::greater<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::less<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::greater_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::less_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::not_equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::binder2nd<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::binder1st<T> >
{ enum { Cost = ei_functor_traits<T>::Cost, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::unary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, PacketAccess = false }; };

template<typename T>
struct ei_functor_traits<std::binary_negate<T> >
{ enum { Cost = 1 + ei_functor_traits<T>::Cost, PacketAccess = false }; };

#ifdef EIGEN_STDEXT_SUPPORT

template<typename T0,typename T1>
struct ei_functor_traits<std::project1st<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };

template<typename T0,typename T1>
struct ei_functor_traits<std::project2nd<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };

template<typename T0,typename T1>
struct ei_functor_traits<std::select2nd<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };

template<typename T0,typename T1>
struct ei_functor_traits<std::select1st<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };

template<typename T0,typename T1>
struct ei_functor_traits<std::unary_compose<T0,T1> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost, PacketAccess = false }; };

template<typename T0,typename T1,typename T2>
struct ei_functor_traits<std::binary_compose<T0,T1,T2> >
{ enum { Cost = ei_functor_traits<T0>::Cost + ei_functor_traits<T1>::Cost + ei_functor_traits<T2>::Cost, PacketAccess = false }; };

#endif // EIGEN_STDEXT_SUPPORT

// allow to add new functors and specializations of ei_functor_traits from outside Eigen.
// this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used...
#ifdef EIGEN_FUNCTORS_PLUGIN
#include EIGEN_FUNCTORS_PLUGIN
#endif

#endif // EIGEN_FUNCTORS_H