aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Dot.h
blob: c5f2e8505da5f3a2443f1de8739ea9ed65ade70d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H

/***************************************************************************
* Part 1 : the logic deciding a strategy for vectorization and unrolling
***************************************************************************/

template<typename Derived1, typename Derived2>
struct ei_dot_traits
{
public:
  enum {
    Vectorization = (int(Derived1::Flags)&int(Derived2::Flags)&ActualPacketAccessBit)
                 && (int(Derived1::Flags)&int(Derived2::Flags)&LinearAccessBit)
                  ? LinearVectorization
                  : NoVectorization
  };

private:
  typedef typename Derived1::Scalar Scalar;
  enum {
    PacketSize = ei_packet_traits<Scalar>::size,
    Cost = Derived1::SizeAtCompileTime * (Derived1::CoeffReadCost + Derived2::CoeffReadCost + NumTraits<Scalar>::MulCost)
           + (Derived1::SizeAtCompileTime-1) * NumTraits<Scalar>::AddCost,
    UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
  };

public:
  enum {
    Unrolling = Cost <= UnrollingLimit
              ? CompleteUnrolling
              : NoUnrolling
  };
};

/***************************************************************************
* Part 2 : unrollers
***************************************************************************/

/*** no vectorization ***/

template<typename Derived1, typename Derived2, int Start, int Length>
struct ei_dot_novec_unroller
{
  enum {
    HalfLength = Length/2
  };

  typedef typename Derived1::Scalar Scalar;

  inline static Scalar run(const Derived1& v1, const Derived2& v2)
  {
    return ei_dot_novec_unroller<Derived1, Derived2, Start, HalfLength>::run(v1, v2)
         + ei_dot_novec_unroller<Derived1, Derived2, Start+HalfLength, Length-HalfLength>::run(v1, v2);
  }
};

template<typename Derived1, typename Derived2, int Start>
struct ei_dot_novec_unroller<Derived1, Derived2, Start, 1>
{
  typedef typename Derived1::Scalar Scalar;

  inline static Scalar run(const Derived1& v1, const Derived2& v2)
  {
    return v1.coeff(Start) * ei_conj(v2.coeff(Start));
  }
};

/*** vectorization ***/

template<typename Derived1, typename Derived2, int Index, int Stop,
         bool LastPacket = (Stop-Index == ei_packet_traits<typename Derived1::Scalar>::size)>
struct ei_dot_vec_unroller
{
  typedef typename Derived1::Scalar Scalar;
  typedef typename ei_packet_traits<Scalar>::type PacketScalar;

  enum {
    row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index,
    col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0,
    row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index,
    col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0
  };

  inline static PacketScalar run(const Derived1& v1, const Derived2& v2)
  {
    return ei_pmadd(
      v1.template packet<Aligned>(row1, col1),
      v2.template packet<Aligned>(row2, col2),
      ei_dot_vec_unroller<Derived1, Derived2, Index+ei_packet_traits<Scalar>::size, Stop>::run(v1, v2)
    );
  }
};

template<typename Derived1, typename Derived2, int Index, int Stop>
struct ei_dot_vec_unroller<Derived1, Derived2, Index, Stop, true>
{
  enum {
    row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index,
    col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0,
    row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index,
    col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0,
    alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned,
    alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned
  };

  typedef typename Derived1::Scalar Scalar;
  typedef typename ei_packet_traits<Scalar>::type PacketScalar;

  inline static PacketScalar run(const Derived1& v1, const Derived2& v2)
  {
    return ei_pmul(v1.template packet<alignment1>(row1, col1), v2.template packet<alignment2>(row2, col2));
  }
};

/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/

template<typename Derived1, typename Derived2,
         int Vectorization = ei_dot_traits<Derived1, Derived2>::Vectorization,
         int Unrolling = ei_dot_traits<Derived1, Derived2>::Unrolling
>
struct ei_dot_impl;

template<typename Derived1, typename Derived2>
struct ei_dot_impl<Derived1, Derived2, NoVectorization, NoUnrolling>
{
  typedef typename Derived1::Scalar Scalar;
  static Scalar run(const Derived1& v1, const Derived2& v2)
  {
    ei_assert(v1.size()>0 && "you are using a non initialized vector");
    Scalar res;
    res = v1.coeff(0) * ei_conj(v2.coeff(0));
    for(int i = 1; i < v1.size(); ++i)
      res += v1.coeff(i) * ei_conj(v2.coeff(i));
    return res;
  }
};

template<typename Derived1, typename Derived2>
struct ei_dot_impl<Derived1, Derived2, NoVectorization, CompleteUnrolling>
  : public ei_dot_novec_unroller<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
{};

template<typename Derived1, typename Derived2>
struct ei_dot_impl<Derived1, Derived2, LinearVectorization, NoUnrolling>
{
  typedef typename Derived1::Scalar Scalar;
  typedef typename ei_packet_traits<Scalar>::type PacketScalar;

  static Scalar run(const Derived1& v1, const Derived2& v2)
  {
    const int size = v1.size();
    const int packetSize = ei_packet_traits<Scalar>::size;
    const int alignedSize = (size/packetSize)*packetSize;
    enum {
      alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned,
      alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned
    };
    Scalar res;

    // do the vectorizable part of the sum
    if(size >= packetSize)
    {
      PacketScalar packet_res = ei_pmul(
                                  v1.template packet<alignment1>(0),
                                  v2.template packet<alignment2>(0)
                                );
      for(int index = packetSize; index<alignedSize; index += packetSize)
      {
        packet_res = ei_pmadd(
                       v1.template packet<alignment1>(index),
                       v2.template packet<alignment2>(index),
                       packet_res
                     );
      }
      res = ei_predux(packet_res);

      // now we must do the rest without vectorization.
      if(alignedSize == size) return res;
    }
    else // too small to vectorize anything.
         // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
    {
      res = Scalar(0);
    }

    // do the remainder of the vector
    for(int index = alignedSize; index < size; ++index)
    {
      res += v1.coeff(index) * v2.coeff(index);
    }

    return res;
  }
};

template<typename Derived1, typename Derived2>
struct ei_dot_impl<Derived1, Derived2, LinearVectorization, CompleteUnrolling>
{
  typedef typename Derived1::Scalar Scalar;
  typedef typename ei_packet_traits<Scalar>::type PacketScalar;
  enum {
    PacketSize = ei_packet_traits<Scalar>::size,
    Size = Derived1::SizeAtCompileTime,
    VectorizationSize = (Size / PacketSize) * PacketSize
  };
  static Scalar run(const Derived1& v1, const Derived2& v2)
  {
    Scalar res = ei_predux(ei_dot_vec_unroller<Derived1, Derived2, 0, VectorizationSize>::run(v1, v2));
    if (VectorizationSize != Size)
      res += ei_dot_novec_unroller<Derived1, Derived2, VectorizationSize, Size-VectorizationSize>::run(v1, v2);
    return res;
  }
};

/***************************************************************************
* Part 4 : implementation of MatrixBase methods
***************************************************************************/

/** \returns the dot product of *this with other.
  *
  * \only_for_vectors
  *
  * \note If the scalar type is complex numbers, then this function returns the hermitian
  * (sesquilinear) dot product, linear in the first variable and conjugate-linear in the
  * second variable.
  *
  * \sa squaredNorm(), norm()
  */
template<typename Derived>
template<typename OtherDerived>
typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
  EIGEN_STATIC_ASSERT((ei_is_same_type<Scalar, typename OtherDerived::Scalar>::ret),
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  ei_assert(size() == other.size());

  // dot() must honor EvalBeforeNestingBit (eg: v.dot(M*v) )
  typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested;
  typedef typename ei_cleantype<typename OtherDerived::Nested>::type OtherNested;
  return ei_dot_impl<ThisNested, OtherNested>::run(derived(), other.derived());
}

/** \returns the squared \em l2 norm of *this, i.e., for vectors, the dot product of *this with itself.
  *
  * \sa dot(), norm()
  */
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
  return ei_real((*this).cwise().abs2().sum());
}

/** \returns the \em l2 norm of *this, i.e., for vectors, the square root of the dot product of *this with itself.
  *
  * \sa dot(), squaredNorm()
  */
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
  return ei_sqrt(squaredNorm());
}

/** \returns the \em l2 norm of \c *this using a numerically more stable
  * algorithm.
  *
  * \sa norm(), dot(), squaredNorm(), blueNorm()
  */
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::stableNorm() const
{
  return this->cwise().abs().redux(ei_scalar_hypot_op<RealScalar>());
}

/** \internal Computes ibeta^iexp by binary expansion of iexp,
  * exact if ibeta is the machine base */
template<typename T> inline T bexp(int ibeta, int iexp)
{
  T tbeta = T(ibeta);
  T res = 1.0;
  int n = iexp;
  if (n<0)
  {
    n = - n;
    tbeta = 1.0/tbeta;
  }
  for(;;)
  {
    if ((n % 2)==0)
      res = res * tbeta;
    n = n/2;
    if (n==0) return res;
    tbeta = tbeta*tbeta;
  }
  return res;
}

/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
  * A Portable Fortran Program to Find the Euclidean Norm of a Vector,
  * ACM TOMS, Vol 4, Issue 1, 1978.
  *
  * \sa norm(), dot(), squaredNorm(), stableNorm()
  */
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::blueNorm() const
{
  static int nmax;
  static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr;
  int n;
  Scalar ax, abig, amed, asml;

  if(nmax <= 0)
  {
    int nbig, ibeta, it, iemin, iemax, iexp;
    Scalar abig, eps;
    // This program calculates the machine-dependent constants
    // bl, b2, slm, s2m, relerr overfl, nmax
    // from the "basic" machine-dependent numbers
    // nbig, ibeta, it, iemin, iemax, rbig.
    // The following define the basic machine-dependent constants.
    // For portability, the PORT subprograms "ilmaeh" and "rlmach"
    // are used. For any specific computer, each of the assignment
    // statements can be replaced
    nbig  = std::numeric_limits<int>::max();            // largest integer
    ibeta = NumTraits<Scalar>::Base;                    // base for floating-point numbers
    it    = NumTraits<Scalar>::Mantissa;                // number of base-beta digits in mantissa
    iemin = std::numeric_limits<Scalar>::min_exponent;  // minimum exponent
    iemax = std::numeric_limits<Scalar>::max_exponent;  // maximum exponent
    rbig  = std::numeric_limits<Scalar>::max();         // largest floating-point number

    // Check the basic machine-dependent constants.
    if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5)
      || (it<=4 && ibeta <= 3 ) || it<2)
    {
      ei_assert(false && "the algorithm cannot be guaranteed on this computer");
    }
    iexp  = -((1-iemin)/2);
    b1    = bexp<Scalar>(ibeta, iexp);  // lower boundary of midrange
    iexp  = (iemax + 1 - it)/2;
    b2    = bexp<Scalar>(ibeta,iexp);   // upper boundary of midrange

    iexp  = (2-iemin)/2;
    s1m   = bexp<Scalar>(ibeta,iexp);   // scaling factor for lower range
    iexp  = - ((iemax+it)/2);
    s2m   = bexp<Scalar>(ibeta,iexp);   // scaling factor for upper range

    overfl  = rbig*s2m;          // overfow boundary for abig
    eps     = bexp<Scalar>(ibeta, 1-it);
    relerr  = ei_sqrt(eps);      // tolerance for neglecting asml
    abig    = 1.0/eps - 1.0;
    if (Scalar(nbig)>abig)  nmax = abig;  // largest safe n
    else                    nmax = nbig;
  }
  n = size();
  if(n==0)
    return 0;
  asml = Scalar(0);
  amed = Scalar(0);
  abig = Scalar(0);
  for(int j=0; j<n; ++j)
  {
    ax = ei_abs(coeff(j));
    if(ax > b2)      abig += ei_abs2(ax*s2m);
    else if(ax < b1) asml += ei_abs2(ax*s1m);
    else             amed += ei_abs2(ax);
  }
  if(abig > Scalar(0))
  {
    abig = ei_sqrt(abig);
    if(abig > overfl)
    {
      ei_assert(false && "overflow");
      return rbig;
    }
    if(amed > Scalar(0))
    {
      abig = abig/s2m;
      amed = ei_sqrt(amed);
    }
    else
    {
      return abig/s2m;
    }

  }
  else if(asml > Scalar(0))
  {
    if (amed > Scalar(0))
    {
      abig = ei_sqrt(amed);
      amed = ei_sqrt(asml) / s1m;
    }
    else
    {
      return ei_sqrt(asml)/s1m;
    }
  }
  else
  {
    return ei_sqrt(amed);
  }
  asml = std::min(abig, amed);
  abig = std::max(abig, amed);
  if(asml <= abig*relerr)
    return abig;
  else
    return abig * ei_sqrt(Scalar(1) + ei_abs2(asml/abig));
}

/** \returns an expression of the quotient of *this by its own norm.
  *
  * \only_for_vectors
  *
  * \sa norm(), normalize()
  */
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainMatrixType
MatrixBase<Derived>::normalized() const
{
  typedef typename ei_nested<Derived>::type Nested;
  typedef typename ei_unref<Nested>::type _Nested;
  _Nested n(derived());
  return n / n.norm();
}

/** Normalizes the vector, i.e. divides it by its own norm.
  *
  * \only_for_vectors
  *
  * \sa norm(), normalized()
  */
template<typename Derived>
inline void MatrixBase<Derived>::normalize()
{
  *this /= norm();
}

/** \returns true if *this is approximately orthogonal to \a other,
  *          within the precision given by \a prec.
  *
  * Example: \include MatrixBase_isOrthogonal.cpp
  * Output: \verbinclude MatrixBase_isOrthogonal.out
  */
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, RealScalar prec) const
{
  typename ei_nested<Derived,2>::type nested(derived());
  typename ei_nested<OtherDerived,2>::type otherNested(other.derived());
  return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}

/** \returns true if *this is approximately an unitary matrix,
  *          within the precision given by \a prec. In the case where the \a Scalar
  *          type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
  *
  * \note This can be used to check whether a family of vectors forms an orthonormal basis.
  *       Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
  *       orthonormal basis.
  *
  * Example: \include MatrixBase_isUnitary.cpp
  * Output: \verbinclude MatrixBase_isUnitary.out
  */
template<typename Derived>
bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
{
  typename Derived::Nested nested(derived());
  for(int i = 0; i < cols(); ++i)
  {
    if(!ei_isApprox(nested.col(i).squaredNorm(), static_cast<Scalar>(1), prec))
      return false;
    for(int j = 0; j < i; ++j)
      if(!ei_isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
        return false;
  }
  return true;
}
#endif // EIGEN_DOT_H