aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Dot.h
blob: 322ff63a28239c14675ef84f980df861884d3b2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.

#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H

template<int Index, int Size, typename Derived1, typename Derived2>
struct DotUnroller
{
  static void run(const Derived1 &v1, const Derived2& v2, typename Derived1::Scalar &dot)
  {
    DotUnroller<Index-1, Size, Derived1, Derived2>::run(v1, v2, dot);
    dot += v1.coeff(Index) * conj(v2.coeff(Index));
  }
};

template<int Size, typename Derived1, typename Derived2>
struct DotUnroller<0, Size, Derived1, Derived2>
{
  static void run(const Derived1 &v1, const Derived2& v2, typename Derived1::Scalar &dot)
  {
    dot = v1.coeff(0) * conj(v2.coeff(0));
  }
};

template<int Index, typename Derived1, typename Derived2>
struct DotUnroller<Index, Dynamic, Derived1, Derived2>
{
  static void run(const Derived1&, const Derived2&, typename Derived1::Scalar&) {}
};

// prevent buggy user code from causing an infinite recursion
template<int Index, typename Derived1, typename Derived2>
struct DotUnroller<Index, 0, Derived1, Derived2>
{
  static void run(const Derived1&, const Derived2&, typename Derived1::Scalar&) {}
};

/** \returns the dot product of *this with other.
  *
  * \only_for_vectors
  * 
  * \note If the scalar type is complex numbers, then this function returns the hermitian
  * (sesquilinear) dot product, linear in the first variable and anti-linear in the
  * second variable.
  *
  * \sa norm2(), norm()
  */
template<typename Scalar, typename Derived>
template<typename OtherDerived>
Scalar MatrixBase<Scalar, Derived>::dot(const OtherDerived& other) const
{
  assert(IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime && size() == other.size());
  Scalar res;
  if(EIGEN_UNROLLED_LOOPS && SizeAtCompileTime != Dynamic && SizeAtCompileTime <= 16)
    DotUnroller<SizeAtCompileTime-1, SizeAtCompileTime, Derived, OtherDerived>
      ::run(*static_cast<const Derived*>(this), other, res);
  else
  {
    res = (*this).coeff(0) * conj(other.coeff(0));
    for(int i = 1; i < size(); i++)
      res += (*this).coeff(i)* conj(other.coeff(i));
  }
  return res;
}

/** \returns the squared norm of *this, i.e. the dot product of *this with itself.
  *
  * \only_for_vectors
  *
  * \sa dot(), norm()
  */
template<typename Scalar, typename Derived>
typename NumTraits<Scalar>::Real MatrixBase<Scalar, Derived>::norm2() const
{
  return real(dot(*this));
}

/** \returns the norm of *this, i.e. the square root of the dot product of *this with itself.
  *
  * \only_for_vectors
  *
  * \sa dot(), norm2()
  */
template<typename Scalar, typename Derived>
typename NumTraits<Scalar>::Real MatrixBase<Scalar, Derived>::norm() const
{
  return sqrt(norm2());
}

/** \returns an expression of the quotient of *this by its own norm.
  *
  * \only_for_vectors
  *
  * \sa norm()
  */
template<typename Scalar, typename Derived>
const ScalarMultiple<typename NumTraits<Scalar>::Real, Derived>
MatrixBase<Scalar, Derived>::normalized() const
{
  return (*this) / norm();
}

template<typename Scalar, typename Derived>
template<typename OtherDerived>
bool MatrixBase<Scalar, Derived>::isOrtho
(const OtherDerived& other,
 const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()) const
{
  return abs2(dot(other)) <= prec * prec * norm2() * other.norm2();
}

template<typename Scalar, typename Derived>
bool MatrixBase<Scalar, Derived>::isOrtho
(const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()) const
{
  for(int i = 0; i < cols(); i++)
  {
    if(!isApprox(col(i).norm2(), static_cast<Scalar>(1)))
      return false;
    for(int j = 0; j < i; j++)
      if(!isMuchSmallerThan(col(i).dot(col(j)), static_cast<Scalar>(1)))
        return false;
  }
  return true;
}
#endif // EIGEN_DOT_H