aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Dot.h
blob: 9fc2fb60e228dbc3a68a2bcaad59198ea4d1c011 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H

// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template<typename T, typename U,
// the NeedToTranspose condition here is taken straight from Assign.h
         bool NeedToTranspose = T::IsVectorAtCompileTime
                && U::IsVectorAtCompileTime
                && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
                      |  // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
                         // revert to || as soon as not needed anymore.
                    (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
>
struct ei_dot_nocheck
{
  static inline typename ei_traits<T>::Scalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
  {
    return a.template binaryExpr<ei_scalar_conj_product_op<typename ei_traits<T>::Scalar> >(b).sum();
  }
};

template<typename T, typename U>
struct ei_dot_nocheck<T, U, true>
{
  static inline typename ei_traits<T>::Scalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
  {
    return a.transpose().template binaryExpr<ei_scalar_conj_product_op<typename ei_traits<T>::Scalar> >(b).sum();
  }
};

/** \returns the dot product of *this with other.
  *
  * \only_for_vectors
  *
  * \note If the scalar type is complex numbers, then this function returns the hermitian
  * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
  * second variable.
  *
  * \sa squaredNorm(), norm()
  */
template<typename Derived>
template<typename OtherDerived>
typename ei_traits<Derived>::Scalar
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
  EIGEN_STATIC_ASSERT((ei_is_same_type<Scalar, typename OtherDerived::Scalar>::ret),
    YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  ei_assert(size() == other.size());

  return ei_dot_nocheck<Derived,OtherDerived>::run(*this, other);
}

//---------- implementation of L2 norm and related functions ----------

/** \returns the squared \em l2 norm of *this, i.e., for vectors, the dot product of *this with itself.
  *
  * \sa dot(), norm()
  */
template<typename Derived>
EIGEN_STRONG_INLINE typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
  return ei_real((*this).cwiseAbs2().sum());
}

/** \returns the \em l2 norm of *this, i.e., for vectors, the square root of the dot product of *this with itself.
  *
  * \sa dot(), squaredNorm()
  */
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
  return ei_sqrt(squaredNorm());
}

/** \returns an expression of the quotient of *this by its own norm.
  *
  * \only_for_vectors
  *
  * \sa norm(), normalize()
  */
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
  typedef typename ei_nested<Derived>::type Nested;
  typedef typename ei_unref<Nested>::type _Nested;
  _Nested n(derived());
  return n / n.norm();
}

/** Normalizes the vector, i.e. divides it by its own norm.
  *
  * \only_for_vectors
  *
  * \sa norm(), normalized()
  */
template<typename Derived>
inline void MatrixBase<Derived>::normalize()
{
  *this /= norm();
}

//---------- implementation of other norms ----------

template<typename Derived, int p>
struct ei_lpNorm_selector
{
  typedef typename NumTraits<typename ei_traits<Derived>::Scalar>::Real RealScalar;
  inline static RealScalar run(const MatrixBase<Derived>& m)
  {
    return ei_pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
  }
};

template<typename Derived>
struct ei_lpNorm_selector<Derived, 1>
{
  inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
  {
    return m.cwiseAbs().sum();
  }
};

template<typename Derived>
struct ei_lpNorm_selector<Derived, 2>
{
  inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
  {
    return m.norm();
  }
};

template<typename Derived>
struct ei_lpNorm_selector<Derived, Infinity>
{
  inline static typename NumTraits<typename ei_traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
  {
    return m.cwiseAbs().maxCoeff();
  }
};

/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
  *          of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^p\infty \f$
  *          norm, that is the maximum of the absolute values of the coefficients of *this.
  *
  * \sa norm()
  */
template<typename Derived>
template<int p>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real
MatrixBase<Derived>::lpNorm() const
{
  return ei_lpNorm_selector<Derived, p>::run(*this);
}

//---------- implementation of isOrthogonal / isUnitary ----------

/** \returns true if *this is approximately orthogonal to \a other,
  *          within the precision given by \a prec.
  *
  * Example: \include MatrixBase_isOrthogonal.cpp
  * Output: \verbinclude MatrixBase_isOrthogonal.out
  */
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, RealScalar prec) const
{
  typename ei_nested<Derived,2>::type nested(derived());
  typename ei_nested<OtherDerived,2>::type otherNested(other.derived());
  return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}

/** \returns true if *this is approximately an unitary matrix,
  *          within the precision given by \a prec. In the case where the \a Scalar
  *          type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
  *
  * \note This can be used to check whether a family of vectors forms an orthonormal basis.
  *       Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
  *       orthonormal basis.
  *
  * Example: \include MatrixBase_isUnitary.cpp
  * Output: \verbinclude MatrixBase_isUnitary.out
  */
template<typename Derived>
bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
{
  typename Derived::Nested nested(derived());
  for(Index i = 0; i < cols(); ++i)
  {
    if(!ei_isApprox(nested.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
      return false;
    for(Index j = 0; j < i; ++j)
      if(!ei_isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))
        return false;
  }
  return true;
}

#endif // EIGEN_DOT_H