1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DIAGONALMATRIX_H
#define EIGEN_DIAGONALMATRIX_H
template<typename Derived>
class DiagonalBase : public MultiplierBase<Derived>
{
public:
typedef typename ei_traits<Derived>::DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
IsVectorAtCompileTime = 0,
Flags = 0
};
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
#ifndef EIGEN_PARSED_BY_DOXYGEN
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
DenseMatrixType toDenseMatrix() const { return derived(); }
template<typename DenseDerived>
void evalToDense(MatrixBase<DenseDerived> &other) const;
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
inline DiagonalVectorType& diagonal() { return derived().diagonal(); }
inline int rows() const { return diagonal().size(); }
inline int cols() const { return diagonal().size(); }
template<typename MatrixDerived>
const DiagonalProduct<MatrixDerived, Derived, DiagonalOnTheLeft>
operator*(const MatrixBase<MatrixDerived> &matrix) const;
};
template<typename Derived>
template<typename DenseDerived>
void DiagonalBase<Derived>::evalToDense(MatrixBase<DenseDerived> &other) const
{
other.setZero();
other.diagonal() = diagonal();
}
/** \class DiagonalMatrix
* \nonstableyet
*
* \brief Represents a diagonal matrix with its storage
*
* \param _Scalar the type of coefficients
* \param _Size the dimension of the matrix, or Dynamic
*
* \sa class Matrix
*/
template<typename _Scalar, int _Size>
struct ei_traits<DiagonalMatrix<_Scalar,_Size> >
{
typedef Matrix<_Scalar,_Size,1> DiagonalVectorType;
};
template<typename _Scalar, int _Size>
class DiagonalMatrix
: public DiagonalBase<DiagonalMatrix<_Scalar,_Size> >
{
public:
typedef typename ei_traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
typedef const DiagonalMatrix& Nested;
typedef _Scalar Scalar;
protected:
DiagonalVectorType m_diagonal;
public:
inline const DiagonalVectorType& diagonal() const { return m_diagonal; }
inline DiagonalVectorType& diagonal() { return m_diagonal; }
/** Default constructor without initialization */
inline DiagonalMatrix() {}
/** Constructs a diagonal matrix with given dimension */
inline DiagonalMatrix(int dim) : m_diagonal(dim) {}
/** 2D only */
inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {}
/** 3D only */
inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {}
template<typename OtherDerived>
inline DiagonalMatrix(const DiagonalBase<OtherDerived>& other) : m_diagonal(other.diagonal()) {}
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {}
/** generic constructor from expression of the diagonal coefficients */
template<typename OtherDerived>
explicit inline DiagonalMatrix(const MatrixBase<OtherDerived>& other) : m_diagonal(other)
{}
template<typename OtherDerived>
DiagonalMatrix& operator=(const DiagonalBase<OtherDerived>& other)
{
m_diagonal = other.diagonal();
return *this;
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
DiagonalMatrix& operator=(const DiagonalMatrix& other)
{
m_diagonal = other.m_diagonal();
return *this;
}
inline void resize(int size) { m_diagonal.resize(size); }
inline void setZero() { m_diagonal.setZero(); }
inline void setZero(int size) { m_diagonal.setZero(size); }
inline void setIdentity() { m_diagonal.setIdentity(); }
inline void setIdentity(int size) { m_diagonal.setIdentity(size); }
};
/** \class DiagonalWrapper
* \nonstableyet
*
* \brief Expression of a diagonal matrix
*
* \param _DiagonalVectorType the type of the vector of diagonal coefficients
*
* This class is an expression of a diagonal matrix with given vector of diagonal
* coefficients. It is the return type of MatrixBase::asDiagonal()
* and most of the time this is the only way that it is used.
*
* \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal()
*/
template<typename _DiagonalVectorType>
struct ei_traits<DiagonalWrapper<_DiagonalVectorType> >
{
typedef _DiagonalVectorType DiagonalVectorType;
};
template<typename _DiagonalVectorType>
class DiagonalWrapper
: public DiagonalBase<DiagonalWrapper<_DiagonalVectorType> >, ei_no_assignment_operator
{
public:
typedef _DiagonalVectorType DiagonalVectorType;
typedef DiagonalWrapper Nested;
inline DiagonalWrapper(const DiagonalVectorType& diagonal) : m_diagonal(diagonal) {}
const DiagonalVectorType& diagonal() const { return m_diagonal; }
protected:
const typename DiagonalVectorType::Nested m_diagonal;
};
/** \nonstableyet
* \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients
*
* \only_for_vectors
*
* \addexample AsDiagonalExample \label How to build a diagonal matrix from a vector
*
* Example: \include MatrixBase_asDiagonal.cpp
* Output: \verbinclude MatrixBase_asDiagonal.out
*
* \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()
**/
template<typename Derived>
inline const DiagonalWrapper<Derived>
MatrixBase<Derived>::asDiagonal() const
{
return derived();
}
/** \nonstableyet
* \returns true if *this is approximately equal to a diagonal matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isDiagonal.cpp
* Output: \verbinclude MatrixBase_isDiagonal.out
*
* \sa asDiagonal()
*/
template<typename Derived>
bool MatrixBase<Derived>::isDiagonal
(RealScalar prec) const
{
if(cols() != rows()) return false;
RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
for(int j = 0; j < cols(); ++j)
{
RealScalar absOnDiagonal = ei_abs(coeff(j,j));
if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
}
for(int j = 0; j < cols(); ++j)
for(int i = 0; i < j; ++i)
{
if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
if(!ei_isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
}
return true;
}
#endif // EIGEN_DIAGONALMATRIX_H
|