aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/DiagonalMatrix.h
blob: e09797eaface30c296727e0e4da9e372c97cd172 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_DIAGONALMATRIX_H
#define EIGEN_DIAGONALMATRIX_H

/** \class DiagonalMatrix
  *
  * \brief Expression of a diagonal matrix
  *
  * \param CoeffsVectorType the type of the vector of diagonal coefficients
  *
  * This class is an expression of a diagonal matrix with given vector of diagonal
  * coefficients. It is the return
  * type of MatrixBase::diagonal(const OtherDerived&) and most of the time this is
  * the only way it is used.
  *
  * \sa MatrixBase::diagonal(const OtherDerived&)
  */
template<typename CoeffsVectorType>
struct ei_traits<DiagonalMatrix<CoeffsVectorType> >
{
  typedef typename CoeffsVectorType::Scalar Scalar;
  typedef typename ei_nested<CoeffsVectorType>::type CoeffsVectorTypeNested;
  typedef typename ei_unref<CoeffsVectorTypeNested>::type _CoeffsVectorTypeNested;
  enum {
    RowsAtCompileTime = CoeffsVectorType::SizeAtCompileTime,
    ColsAtCompileTime = CoeffsVectorType::SizeAtCompileTime,
    MaxRowsAtCompileTime = CoeffsVectorType::MaxSizeAtCompileTime,
    MaxColsAtCompileTime = CoeffsVectorType::MaxSizeAtCompileTime,
    Flags = (_CoeffsVectorTypeNested::Flags & HereditaryBits) | Diagonal,
    CoeffReadCost = _CoeffsVectorTypeNested::CoeffReadCost
  };
};

template<typename CoeffsVectorType>
class DiagonalMatrix : ei_no_assignment_operator,
   public MatrixBase<DiagonalMatrix<CoeffsVectorType> >
{
  public:

    EIGEN_GENERIC_PUBLIC_INTERFACE(DiagonalMatrix)

    // needed to evaluate a DiagonalMatrix<Xpr> to a DiagonalMatrix<NestByValue<Vector> >
    template<typename OtherCoeffsVectorType>
    inline DiagonalMatrix(const DiagonalMatrix<OtherCoeffsVectorType>& other) : m_coeffs(other.diagonal())
    {
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(CoeffsVectorType);
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherCoeffsVectorType);
      ei_assert(m_coeffs.size() > 0);
    }

    inline DiagonalMatrix(const CoeffsVectorType& coeffs) : m_coeffs(coeffs)
    {
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(CoeffsVectorType);
      ei_assert(coeffs.size() > 0);
    }

    inline int rows() const { return m_coeffs.size(); }
    inline int cols() const { return m_coeffs.size(); }

    inline const Scalar coeff(int row, int col) const
    {
      return row == col ? m_coeffs.coeff(row) : static_cast<Scalar>(0);
    }

    inline const CoeffsVectorType& diagonal() const { return m_coeffs; }

  protected:
    const typename CoeffsVectorType::Nested m_coeffs;
};

/** \returns an expression of a diagonal matrix with *this as vector of diagonal coefficients
  *
  * \only_for_vectors
  *
  * \addexample AsDiagonalExample \label How to build a diagonal matrix from a vector
  *
  * Example: \include MatrixBase_asDiagonal.cpp
  * Output: \verbinclude MatrixBase_asDiagonal.out
  *
  * \sa class DiagonalMatrix, isDiagonal()
  **/
template<typename Derived>
inline const DiagonalMatrix<Derived>
MatrixBase<Derived>::asDiagonal() const
{
  return derived();
}

/** \returns true if *this is approximately equal to a diagonal matrix,
  *          within the precision given by \a prec.
  *
  * Example: \include MatrixBase_isDiagonal.cpp
  * Output: \verbinclude MatrixBase_isDiagonal.out
  *
  * \sa asDiagonal()
  */
template<typename Derived>
bool MatrixBase<Derived>::isDiagonal
(RealScalar prec) const
{
  if(cols() != rows()) return false;
  RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
  for(int j = 0; j < cols(); j++)
  {
    RealScalar absOnDiagonal = ei_abs(coeff(j,j));
    if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
  }
  for(int j = 0; j < cols(); j++)
    for(int i = 0; i < j; i++)
    {
      if(!ei_isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
      if(!ei_isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
    }
  return true;
}

#endif // EIGEN_DIAGONALMATRIX_H