1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CWISE_NULLARY_OP_H
#define EIGEN_CWISE_NULLARY_OP_H
/** \class CwiseNullaryOp
*
* \brief Generic expression of a matrix where all coefficients are defined by a functor
*
* \param NullaryOp template functor implementing the operator
*
* This class represents an expression of a generic nullary operator.
* It is the return type of the ones(), zero(), constant(), identity() and random() functions,
* and most of the time this is the only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* \sa class CwiseUnaryOp, class CwiseBinaryOp, MatrixBase::NullaryExpr()
*/
template<typename NullaryOp, typename MatrixType>
struct ei_traits<CwiseNullaryOp<NullaryOp, MatrixType> >
{
typedef typename MatrixType::Scalar Scalar;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
Flags = (MatrixType::Flags
& ( HereditaryBits
| (ei_functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
| (ei_functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
| (ei_functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
CoeffReadCost = ei_functor_traits<NullaryOp>::Cost
};
};
template<typename NullaryOp, typename MatrixType>
class CwiseNullaryOp : ei_no_assignment_operator,
public MatrixBase<CwiseNullaryOp<NullaryOp, MatrixType> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseNullaryOp)
CwiseNullaryOp(int rows, int cols, const NullaryOp& func = NullaryOp())
: m_rows(rows), m_cols(cols), m_functor(func)
{
ei_assert(rows > 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
}
int rows() const { return m_rows.value(); }
int cols() const { return m_cols.value(); }
const Scalar coeff(int rows, int cols) const
{
return m_functor(rows, cols);
}
template<int LoadMode>
PacketScalar packet(int, int) const
{
return m_functor.packetOp();
}
const Scalar coeff(int index) const
{
return m_functor(index);
}
template<int LoadMode>
PacketScalar packet(int) const
{
return m_functor.packetOp();
}
protected:
const ei_int_if_dynamic<RowsAtCompileTime> m_rows;
const ei_int_if_dynamic<ColsAtCompileTime> m_cols;
const NullaryOp m_functor;
};
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
const CwiseNullaryOp<CustomNullaryOp, Derived>
MatrixBase<Derived>::NullaryExpr(int rows, int cols, const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, Derived>(rows, cols, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
const CwiseNullaryOp<CustomNullaryOp, Derived>
MatrixBase<Derived>::NullaryExpr(int size, const CustomNullaryOp& func)
{
ei_assert(IsVectorAtCompileTime);
if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, Derived>(1, size, func);
else return CwiseNullaryOp<CustomNullaryOp, Derived>(size, 1, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
const CwiseNullaryOp<CustomNullaryOp, Derived>
MatrixBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, Derived>(RowsAtCompileTime, ColsAtCompileTime, func);
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
const typename MatrixBase<Derived>::ConstantReturnType
MatrixBase<Derived>::constant(int rows, int cols, const Scalar& value)
{
return NullaryExpr(rows, cols, ei_scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
const typename MatrixBase<Derived>::ConstantReturnType
MatrixBase<Derived>::constant(int size, const Scalar& value)
{
return NullaryExpr(size, ei_scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
const typename MatrixBase<Derived>::ConstantReturnType
MatrixBase<Derived>::constant(const Scalar& value)
{
return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, ei_scalar_constant_op<Scalar>(value));
}
template<typename Derived>
bool MatrixBase<Derived>::isApproxToConstant
(const Scalar& value, typename NumTraits<Scalar>::Real prec) const
{
for(int j = 0; j < cols(); j++)
for(int i = 0; i < rows(); i++)
if(!ei_isApprox(coeff(i, j), value, prec))
return false;
return true;
}
/** Sets all coefficients in this expression to \a value.
*
* \sa class CwiseNullaryOp, zero(), ones()
*/
template<typename Derived>
Derived& MatrixBase<Derived>::setConstant(const Scalar& value)
{
return *this = constant(rows(), cols(), value);
}
// zero:
/** \returns an expression of a zero matrix.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int_int.cpp
* Output: \verbinclude MatrixBase_zero_int_int.out
*
* \sa zero(), zero(int)
*/
template<typename Derived>
const typename MatrixBase<Derived>::ConstantReturnType
MatrixBase<Derived>::zero(int rows, int cols)
{
return constant(rows, cols, Scalar(0));
}
/** \returns an expression of a zero vector.
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int.cpp
* Output: \verbinclude MatrixBase_zero_int.out
*
* \sa zero(), zero(int,int)
*/
template<typename Derived>
const typename MatrixBase<Derived>::ConstantReturnType
MatrixBase<Derived>::zero(int size)
{
return constant(size, Scalar(0));
}
/** \returns an expression of a fixed-size zero matrix or vector.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_zero.cpp
* Output: \verbinclude MatrixBase_zero.out
*
* \sa zero(int), zero(int,int)
*/
template<typename Derived>
const typename MatrixBase<Derived>::ConstantReturnType
MatrixBase<Derived>::zero()
{
return constant(Scalar(0));
}
/** \returns true if *this is approximately equal to the zero matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isZero.cpp
* Output: \verbinclude MatrixBase_isZero.out
*
* \sa class CwiseNullaryOp, zero()
*/
template<typename Derived>
bool MatrixBase<Derived>::isZero
(typename NumTraits<Scalar>::Real prec) const
{
for(int j = 0; j < cols(); j++)
for(int i = 0; i < rows(); i++)
if(!ei_isMuchSmallerThan(coeff(i, j), static_cast<Scalar>(1), prec))
return false;
return true;
}
/** Sets all coefficients in this expression to zero.
*
* Example: \include MatrixBase_setZero.cpp
* Output: \verbinclude MatrixBase_setZero.out
*
* \sa class CwiseNullaryOp, zero()
*/
template<typename Derived>
Derived& MatrixBase<Derived>::setZero()
{
return setConstant(Scalar(0));
}
// ones:
/** \returns an expression of a matrix where all coefficients equal one.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int_int.cpp
* Output: \verbinclude MatrixBase_ones_int_int.out
*
* \sa ones(), ones(int), isOnes(), class Ones
*/
template<typename Derived>
const typename MatrixBase<Derived>::ConstantReturnType
MatrixBase<Derived>::ones(int rows, int cols)
{
return constant(rows, cols, Scalar(1));
}
/** \returns an expression of a vector where all coefficients equal one.
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int.cpp
* Output: \verbinclude MatrixBase_ones_int.out
*
* \sa ones(), ones(int,int), isOnes(), class Ones
*/
template<typename Derived>
const typename MatrixBase<Derived>::ConstantReturnType
MatrixBase<Derived>::ones(int size)
{
return constant(size, Scalar(1));
}
/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_ones.cpp
* Output: \verbinclude MatrixBase_ones.out
*
* \sa ones(int), ones(int,int), isOnes(), class Ones
*/
template<typename Derived>
const typename MatrixBase<Derived>::ConstantReturnType
MatrixBase<Derived>::ones()
{
return constant(Scalar(1));
}
/** \returns true if *this is approximately equal to the matrix where all coefficients
* are equal to 1, within the precision given by \a prec.
*
* Example: \include MatrixBase_isOnes.cpp
* Output: \verbinclude MatrixBase_isOnes.out
*
* \sa class CwiseNullaryOp, ones()
*/
template<typename Derived>
bool MatrixBase<Derived>::isOnes
(typename NumTraits<Scalar>::Real prec) const
{
return isApproxToConstant(Scalar(1), prec);
}
/** Sets all coefficients in this expression to one.
*
* Example: \include MatrixBase_setOnes.cpp
* Output: \verbinclude MatrixBase_setOnes.out
*
* \sa class CwiseNullaryOp, ones()
*/
template<typename Derived>
Derived& MatrixBase<Derived>::setOnes()
{
return setConstant(Scalar(1));
}
// Identity:
/** \returns an expression of the identity matrix (not necessarily square).
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so identity() should be used
* instead.
*
* Example: \include MatrixBase_identity_int_int.cpp
* Output: \verbinclude MatrixBase_identity_int_int.out
*
* \sa identity(), setIdentity(), isIdentity()
*/
template<typename Derived>
inline const CwiseNullaryOp<ei_scalar_identity_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::identity(int rows, int cols)
{
return NullaryExpr(rows, cols, ei_scalar_identity_op<Scalar>());
}
/** \returns an expression of the identity matrix (not necessarily square).
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variant taking size arguments.
*
* Example: \include MatrixBase_identity.cpp
* Output: \verbinclude MatrixBase_identity.out
*
* \sa identity(int,int), setIdentity(), isIdentity()
*/
template<typename Derived>
inline const CwiseNullaryOp<ei_scalar_identity_op<typename ei_traits<Derived>::Scalar>, Derived>
MatrixBase<Derived>::identity()
{
return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, ei_scalar_identity_op<Scalar>());
}
/** \returns true if *this is approximately equal to the identity matrix
* (not necessarily square),
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isIdentity.cpp
* Output: \verbinclude MatrixBase_isIdentity.out
*
* \sa class CwiseNullaryOp, identity(), identity(int,int), setIdentity()
*/
template<typename Derived>
bool MatrixBase<Derived>::isIdentity
(typename NumTraits<Scalar>::Real prec) const
{
for(int j = 0; j < cols(); j++)
{
for(int i = 0; i < rows(); i++)
{
if(i == j)
{
if(!ei_isApprox(coeff(i, j), static_cast<Scalar>(1), prec))
return false;
}
else
{
if(!ei_isMuchSmallerThan(coeff(i, j), static_cast<RealScalar>(1), prec))
return false;
}
}
}
return true;
}
/** Writes the identity expression (not necessarily square) into *this.
*
* Example: \include MatrixBase_setIdentity.cpp
* Output: \verbinclude MatrixBase_setIdentity.out
*
* \sa class CwiseNullaryOp, identity(), identity(int,int), isIdentity()
*/
template<typename Derived>
inline Derived& MatrixBase<Derived>::setIdentity()
{
return *this = identity(rows(), cols());
}
#endif // EIGEN_CWISE_NULLARY_OP_H
|