1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CWISE_BINARY_OP_H
#define EIGEN_CWISE_BINARY_OP_H
/** \class CwiseBinaryOp
*
* \brief Generic expression of a coefficient-wise operator between two matrices or vectors
*
* \param BinaryOp template functor implementing the operator
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
*
* This class represents an expression of a generic binary operator of two matrices or vectors.
* It is the return type of the operator+, operator-, and the Cwise methods, and most
* of the time this is the only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
template<typename BinaryOp, typename Lhs, typename Rhs>
struct ei_traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
typedef typename ei_result_of<
BinaryOp(
typename Lhs::Scalar,
typename Rhs::Scalar
)
>::type Scalar;
typedef typename Lhs::Nested LhsNested;
typedef typename Rhs::Nested RhsNested;
typedef typename ei_unref<LhsNested>::type _LhsNested;
typedef typename ei_unref<RhsNested>::type _RhsNested;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = Lhs::RowsAtCompileTime,
ColsAtCompileTime = Lhs::ColsAtCompileTime,
MaxRowsAtCompileTime = Lhs::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Lhs::MaxColsAtCompileTime,
Flags = (int(LhsFlags) | int(RhsFlags)) & (
HereditaryBits
| (int(LhsFlags) & int(RhsFlags) & (LinearAccessBit | AlignedBit))
| (ei_functor_traits<BinaryOp>::PacketAccess && ((int(LhsFlags) & RowMajorBit)==(int(RhsFlags) & RowMajorBit))
? (int(LhsFlags) & int(RhsFlags) & PacketAccessBit) : 0)),
CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + ei_functor_traits<BinaryOp>::Cost
};
};
template<typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOp : ei_no_assignment_operator,
public MatrixBase<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
typedef typename ei_traits<CwiseBinaryOp>::LhsNested LhsNested;
typedef typename ei_traits<CwiseBinaryOp>::RhsNested RhsNested;
class InnerIterator;
inline CwiseBinaryOp(const Lhs& lhs, const Rhs& rhs, const BinaryOp& func = BinaryOp())
: m_lhs(lhs), m_rhs(rhs), m_functor(func)
{
ei_assert(lhs.rows() == rhs.rows() && lhs.cols() == rhs.cols());
}
inline int rows() const { return m_lhs.rows(); }
inline int cols() const { return m_lhs.cols(); }
inline const Scalar coeff(int row, int col) const
{
return m_functor(m_lhs.coeff(row, col), m_rhs.coeff(row, col));
}
template<int LoadMode>
inline PacketScalar packet(int row, int col) const
{
return m_functor.packetOp(m_lhs.template packet<LoadMode>(row, col), m_rhs.template packet<LoadMode>(row, col));
}
inline const Scalar coeff(int index) const
{
return m_functor(m_lhs.coeff(index), m_rhs.coeff(index));
}
template<int LoadMode>
inline PacketScalar packet(int index) const
{
return m_functor.packetOp(m_lhs.template packet<LoadMode>(index), m_rhs.template packet<LoadMode>(index));
}
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
const BinaryOp m_functor;
};
/**\returns an expression of the difference of \c *this and \a other
*
* \note If you want to substract a given scalar from all coefficients, see Cwise::operator-().
*
* \sa class CwiseBinaryOp, MatrixBase::operator-=(), Cwise::operator-()
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<ei_scalar_difference_op<typename ei_traits<Derived>::Scalar>,
Derived, OtherDerived>
MatrixBase<Derived>::operator-(const MatrixBase<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_difference_op<Scalar>,
Derived, OtherDerived>(derived(), other.derived());
}
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
inline Derived &
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
{
return *this = *this - other;
}
/** \relates MatrixBase
*
* \returns an expression of the sum of \c *this and \a other
*
* \note If you want to add a given scalar to all coefficients, see Cwise::operator+().
*
* \sa class CwiseBinaryOp, MatrixBase::operator+=(), Cwise::operator+()
*/
template<typename Derived>
template<typename OtherDerived>
inline const CwiseBinaryOp<ei_scalar_sum_op<typename ei_traits<Derived>::Scalar>, Derived, OtherDerived>
MatrixBase<Derived>::operator+(const MatrixBase<OtherDerived> &other) const
{
return CwiseBinaryOp<ei_scalar_sum_op<Scalar>, Derived, OtherDerived>(derived(), other.derived());
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
inline Derived &
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
{
return *this = *this + other;
}
/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other
*
* Example: \include Cwise_product.cpp
* Output: \verbinclude Cwise_product.out
*
* \sa class CwiseBinaryOp, operator/(), square()
*/
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_product_op)
Cwise<ExpressionType>::operator*(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_product_op)(_expression(), other.derived());
}
/** \returns an expression of the coefficient-wise quotient of *this and \a other
*
* Example: \include Cwise_quotient.cpp
* Output: \verbinclude Cwise_quotient.out
*
* \sa class CwiseBinaryOp, operator*(), inverse()
*/
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_quotient_op)
Cwise<ExpressionType>::operator/(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_quotient_op)(_expression(), other.derived());
}
/** \returns an expression of the coefficient-wise min of *this and \a other
*
* Example: \include Cwise_min.cpp
* Output: \verbinclude Cwise_min.out
*
* \sa class CwiseBinaryOp
*/
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_min_op)
Cwise<ExpressionType>::min(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_min_op)(_expression(), other.derived());
}
/** \returns an expression of the coefficient-wise max of *this and \a other
*
* Example: \include Cwise_max.cpp
* Output: \verbinclude Cwise_max.out
*
* \sa class CwiseBinaryOp
*/
template<typename ExpressionType>
template<typename OtherDerived>
inline const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_max_op)
Cwise<ExpressionType>::max(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_max_op)(_expression(), other.derived());
}
/** \returns an expression of a custom coefficient-wise operator \a func of *this and \a other
*
* The template parameter \a CustomBinaryOp is the type of the functor
* of the custom operator (see class CwiseBinaryOp for an example)
*
* \addexample CustomCwiseBinaryFunctors \label How to use custom coeff wise binary functors
*
* Here is an example illustrating the use of custom functors:
* \include class_CwiseBinaryOp.cpp
* Output: \verbinclude class_CwiseBinaryOp.out
*
* \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, Cwise::operator*, Cwise::operator/
*/
template<typename Derived>
template<typename CustomBinaryOp, typename OtherDerived>
inline const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
MatrixBase<Derived>::binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func) const
{
return CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>(derived(), other.derived(), func);
}
#endif // EIGEN_CWISE_BINARY_OP_H
|