1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_BANDMATRIX_H
#define EIGEN_BANDMATRIX_H
/** \nonstableyet
* \class BandMatrix
*
* \brief Represents a rectangular matrix with a banded storage
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Rows Number of rows, or \b Dynamic
* \param Cols Number of columns, or \b Dynamic
* \param Supers Number of super diagonal
* \param Subs Number of sub diagonal
* \param _Options A combination of either \b RowMajor or \b ColMajor, and of \b SelfAdjoint
* The former controls storage order, and defaults to column-major. The latter controls
* whether the matrix represent a selfadjoint matrix in which case either Supers of Subs
* have to be null.
*
* \sa class TridiagonalMatrix
*/
template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
struct ei_traits<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
{
typedef _Scalar Scalar;
enum {
CoeffReadCost = NumTraits<Scalar>::ReadCost,
RowsAtCompileTime = Rows,
ColsAtCompileTime = Cols,
MaxRowsAtCompileTime = Rows,
MaxColsAtCompileTime = Cols,
Flags = 0
};
};
template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
class BandMatrix : public AnyMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
{
public:
enum {
Flags = ei_traits<BandMatrix>::Flags,
CoeffReadCost = ei_traits<BandMatrix>::CoeffReadCost,
RowsAtCompileTime = ei_traits<BandMatrix>::RowsAtCompileTime,
ColsAtCompileTime = ei_traits<BandMatrix>::ColsAtCompileTime,
MaxRowsAtCompileTime = ei_traits<BandMatrix>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = ei_traits<BandMatrix>::MaxColsAtCompileTime
};
typedef typename ei_traits<BandMatrix>::Scalar Scalar;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> PlainMatrixType;
protected:
enum {
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic))
? 1 + Supers + Subs
: Dynamic,
SizeAtCompileTime = EIGEN_ENUM_MIN(Rows,Cols)
};
typedef Matrix<Scalar,DataRowsAtCompileTime,ColsAtCompileTime,Options&RowMajor?RowMajor:ColMajor> DataType;
public:
inline BandMatrix(int rows=Rows, int cols=Cols, int supers=Supers, int subs=Subs)
: m_data(1+supers+subs,cols),
m_rows(rows), m_supers(supers), m_subs(subs)
{
m_data.setConstant(666);
}
/** \returns the number of columns */
inline int rows() const { return m_rows.value(); }
/** \returns the number of rows */
inline int cols() const { return m_data.cols(); }
/** \returns the number of super diagonals */
inline int supers() const { return m_supers.value(); }
/** \returns the number of sub diagonals */
inline int subs() const { return m_subs.value(); }
/** \returns a vector expression of the \a i -th column,
* only the meaningful part is returned.
* \warning the internal storage must be column major. */
inline Block<DataType,Dynamic,1> col(int i)
{
EIGEN_STATIC_ASSERT((Options&RowMajor)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
int start = 0;
int len = m_data.rows();
if (i<=supers())
{
start = supers()-i;
len = std::min(rows(),std::max(0,m_data.rows() - (supers()-i)));
}
else if (i>=rows()-subs())
len = std::max(0,m_data.rows() - (i + 1 - rows() + subs()));
return Block<DataType,Dynamic,1>(m_data, start, i, len, 1);
}
/** \returns a vector expression of the main diagonal */
inline Block<DataType,1,SizeAtCompileTime> diagonal()
{ return Block<DataType,1,SizeAtCompileTime>(m_data,supers(),0,1,std::min(rows(),cols())); }
/** \returns a vector expression of the main diagonal (const version) */
inline const Block<DataType,1,SizeAtCompileTime> diagonal() const
{ return Block<DataType,1,SizeAtCompileTime>(m_data,supers(),0,1,std::min(rows(),cols())); }
template<int Index> struct DiagonalIntReturnType {
enum {
ReturnOpposite = (Options&SelfAdjoint) && (Index>0 && Supers==0 || Index<0 && Subs==0),
Conjugate = ReturnOpposite && NumTraits<Scalar>::IsComplex,
ActualIndex = ReturnOpposite ? -Index : Index,
DiagonalSize = RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic
? Dynamic
: ActualIndex<0
? EIGEN_ENUM_MIN(ColsAtCompileTime, RowsAtCompileTime + ActualIndex)
: EIGEN_ENUM_MIN(RowsAtCompileTime, ColsAtCompileTime - ActualIndex)
};
typedef Block<DataType,1, DiagonalSize> BuildType;
typedef typename ei_meta_if<Conjugate,
CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>,NestByValue<BuildType> >,
BuildType>::ret Type;
};
/** \returns a vector expression of the \a Index -th sub or super diagonal */
template<int Index> inline typename DiagonalIntReturnType<Index>::Type diagonal()
{
return typename DiagonalIntReturnType<Index>::BuildType(m_data, supers()-Index, std::max(0,Index), 1, diagonalLength(Index));
}
/** \returns a vector expression of the \a Index -th sub or super diagonal */
template<int Index> inline const typename DiagonalIntReturnType<Index>::Type diagonal() const
{
return typename DiagonalIntReturnType<Index>::BuildType(m_data, supers()-Index, std::max(0,Index), 1, diagonalLength(Index));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline Block<DataType,1,Dynamic> diagonal(int i)
{
ei_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<DataType,1,Dynamic>(m_data, supers()-i, std::max(0,i), 1, diagonalLength(i));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline const Block<DataType,1,Dynamic> diagonal(int i) const
{
ei_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<DataType,1,Dynamic>(m_data, supers()-i, std::max(0,i), 1, diagonalLength(i));
}
PlainMatrixType toDense() const
{
PlainMatrixType res(rows(),cols());
res.setZero();
res.diagonal() = diagonal();
for (int i=1; i<=supers();++i)
res.diagonal(i) = diagonal(i);
for (int i=1; i<=subs();++i)
res.diagonal(-i) = diagonal(-i);
return res;
}
protected:
inline int diagonalLength(int i) const
{ return i<0 ? std::min(cols(),rows()+i) : std::min(rows(),cols()-i); }
DataType m_data;
ei_int_if_dynamic<Rows> m_rows;
ei_int_if_dynamic<Supers> m_supers;
ei_int_if_dynamic<Subs> m_subs;
};
/** \nonstableyet
* \class TridiagonalMatrix
*
* \brief Represents a tridiagonal matrix
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Size Number of rows and cols, or \b Dynamic
* \param _Options Can be 0 or \b SelfAdjoint
*
* \sa class BandMatrix
*/
template<typename Scalar, int Size, int Options>
class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor>
{
typedef BandMatrix<Scalar,Size,Size,1,Options&SelfAdjoint?0:1,Options|RowMajor> Base;
public:
TridiagonalMatrix(int size = Size) : Base(size,size,1,1) {}
inline typename Base::template DiagonalIntReturnType<1>::Type super()
{ return Base::template diagonal<1>(); }
inline const typename Base::template DiagonalIntReturnType<1>::Type super() const
{ return Base::template diagonal<1>(); }
inline typename Base::template DiagonalIntReturnType<-1>::Type sub()
{ return Base::template diagonal<-1>(); }
inline const typename Base::template DiagonalIntReturnType<-1>::Type sub() const
{ return Base::template diagonal<-1>(); }
protected:
};
#endif // EIGEN_BANDMATRIX_H
|