aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Cholesky/LLT.h
blob: 4527067a84896a4a68dfa9a29c28be85dc59e7a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H

template<typename MatrixType, int UpLo> struct LLT_Traits;

/** \ingroup cholesky_Module
  *
  * \class LLT
  *
  * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
  *
  * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
  *
  * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
  * matrix A such that A = LL^* = U^*U, where L is lower triangular.
  *
  * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like  D^*D x = b,
  * for that purpose, we recommend the Cholesky decomposition without square root which is more stable
  * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
  * situations like generalised eigen problems with hermitian matrices.
  *
  * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
  * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
  * has a solution.
  *
  * \sa MatrixBase::llt(), class LDLT
  */
 /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
  * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
  * the strict lower part does not have to store correct values.
  */
template<typename MatrixType, int _UpLo> class LLT
{
  private:
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;

    enum {
      PacketSize = ei_packet_traits<Scalar>::size,
      AlignmentMask = int(PacketSize)-1,
      UpLo = _UpLo
    };

    typedef LLT_Traits<MatrixType,UpLo> Traits;

  public:

    /**
    * \brief Default Constructor.
    *
    * The default constructor is useful in cases in which the user intends to
    * perform decompositions via LLT::compute(const MatrixType&).
    */
    LLT() : m_matrix(), m_isInitialized(false) {}

    LLT(const MatrixType& matrix)
      : m_matrix(matrix.rows(), matrix.cols()),
        m_isInitialized(false)
    {
      compute(matrix);
    }

    /** \returns a view of the upper triangular matrix U */
    inline typename Traits::MatrixU matrixU() const
    {
      ei_assert(m_isInitialized && "LLT is not initialized.");
      return Traits::getU(m_matrix);
    }

    /** \returns a view of the lower triangular matrix L */
    inline typename Traits::MatrixL matrixL() const
    {
      ei_assert(m_isInitialized && "LLT is not initialized.");
      return Traits::getL(m_matrix);
    }

    template<typename RhsDerived, typename ResultType>
    bool solve(const MatrixBase<RhsDerived> &b, ResultType *result) const;

    template<typename Derived>
    bool solveInPlace(MatrixBase<Derived> &bAndX) const;

    void compute(const MatrixType& matrix);

  protected:
    /** \internal
      * Used to compute and store L
      * The strict upper part is not used and even not initialized.
      */
    MatrixType m_matrix;
    bool m_isInitialized;
};

template<typename MatrixType>
bool ei_inplace_llt_lo(MatrixType& mat)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  assert(mat.rows()==mat.cols());
  const int size = mat.rows();

  // The biggest overall is the point of reference to which further diagonals
  // are compared; if any diagonal is negligible compared
  // to the largest overall, the algorithm bails.  This cutoff is suggested
  // in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
  // Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
  // Algorithms" page 217, also by Higham.
  const RealScalar cutoff = machine_epsilon<Scalar>() * size * mat.diagonal().cwise().abs().maxCoeff();
  RealScalar x;
  x = ei_real(mat.coeff(0,0));
  mat.coeffRef(0,0) = ei_sqrt(x);
  if(size==1)
  {
    return true;
  }
  mat.col(0).end(size-1) = mat.col(0).end(size-1) / ei_real(mat.coeff(0,0));
  for (int j = 1; j < size; ++j)
  {
    x = ei_real(mat.coeff(j,j)) - mat.row(j).start(j).squaredNorm();
    if (ei_abs(x) < cutoff) continue;

    mat.coeffRef(j,j) = x = ei_sqrt(x);

    int endSize = size-j-1;
    if (endSize>0)
    {
      mat.col(j).end(endSize) -= (mat.block(j+1, 0, endSize, j) * mat.row(j).start(j).adjoint()).lazy();
      mat.col(j).end(endSize) *= RealScalar(1)/x;
    }
  }

  return true;
}

template<typename MatrixType>
bool ei_inplace_llt_up(MatrixType& mat)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  assert(mat.rows()==mat.cols());
  const int size = mat.rows();

  const RealScalar cutoff = machine_epsilon<Scalar>() * size * mat.diagonal().cwise().abs().maxCoeff();
  RealScalar x;
  x = ei_real(mat.coeff(0,0));
  mat.coeffRef(0,0) = ei_sqrt(x);
  if(size==1)
  {
    return true;
  }
  mat.row(0).end(size-1) = mat.row(0).end(size-1) / ei_real(mat.coeff(0,0));
  for (int j = 1; j < size; ++j)
  {
    x = ei_real(mat.coeff(j,j)) - mat.col(j).start(j).squaredNorm();
    if (ei_abs(x) < cutoff) continue;

    mat.coeffRef(j,j) = x = ei_sqrt(x);

    int endSize = size-j-1;
    if (endSize>0) {
      mat.row(j).end(endSize) -= (mat.col(j).start(j).adjoint() * mat.block(0, j+1, j, endSize)).lazy();
      mat.row(j).end(endSize) *= RealScalar(1)/x;
    }
  }

  return true;
}

template<typename MatrixType> struct LLT_Traits<MatrixType,LowerTriangular>
{
  typedef TriangularView<MatrixType, LowerTriangular> MatrixL;
  typedef TriangularView<NestByValue<typename MatrixType::AdjointReturnType>, UpperTriangular> MatrixU;
  inline static MatrixL getL(const MatrixType& m) { return m; }
  inline static MatrixU getU(const MatrixType& m) { return m.adjoint().nestByValue(); }
  static bool inplace_decomposition(MatrixType& m)
  { return ei_inplace_llt_lo(m); }
};

template<typename MatrixType> struct LLT_Traits<MatrixType,UpperTriangular>
{
  typedef TriangularView<NestByValue<typename MatrixType::AdjointReturnType>, LowerTriangular> MatrixL;
  typedef TriangularView<MatrixType, UpperTriangular> MatrixU;
  inline static MatrixL getL(const MatrixType& m) { return m.adjoint().nestByValue(); }
  inline static MatrixU getU(const MatrixType& m) { return m; }
  static bool inplace_decomposition(MatrixType& m)
  { return ei_inplace_llt_up(m); }
};

/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
  */
template<typename MatrixType, int _UpLo>
void LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
  assert(a.rows()==a.cols());
  const int size = a.rows();
  m_matrix.resize(size, size);
  m_matrix = a;

  m_isInitialized = Traits::inplace_decomposition(m_matrix);
}

/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
  * The result is stored in \a result
  *
  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
  *
  * In other words, it computes \f$ b = A^{-1} b \f$ with
  * \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
  *
  * Example: \include LLT_solve.cpp
  * Output: \verbinclude LLT_solve.out
  *
  * \sa LLT::solveInPlace(), MatrixBase::llt()
  */
template<typename MatrixType, int _UpLo>
template<typename RhsDerived, typename ResultType>
bool LLT<MatrixType,_UpLo>::solve(const MatrixBase<RhsDerived> &b, ResultType *result) const
{
  ei_assert(m_isInitialized && "LLT is not initialized.");
  const int size = m_matrix.rows();
  ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b");
  return solveInPlace((*result) = b);
}

/** This is the \em in-place version of solve().
  *
  * \param bAndX represents both the right-hand side matrix b and result x.
  *
  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
  *
  * This version avoids a copy when the right hand side matrix b is not
  * needed anymore.
  *
  * \sa LLT::solve(), MatrixBase::llt()
  */
template<typename MatrixType, int _UpLo>
template<typename Derived>
bool LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
  ei_assert(m_isInitialized && "LLT is not initialized.");
  const int size = m_matrix.rows();
  ei_assert(size==bAndX.rows());
  matrixL().solveInPlace(bAndX);
  matrixU().solveInPlace(bAndX);
  return true;
}

/** \cholesky_module
  * \returns the LLT decomposition of \c *this
  */
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainMatrixType>
MatrixBase<Derived>::llt() const
{
  return LLT<PlainMatrixType>(derived());
}

/** \cholesky_module
  * \returns the LLT decomposition of \c *this
  */
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainMatrixType, UpLo>
SelfAdjointView<MatrixType, UpLo>::llt() const
{
  return LLT<PlainMatrixType,UpLo>(m_matrix);
}

#endif // EIGEN_LLT_H