1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H
namespace internal{
template<typename MatrixType, int UpLo> struct LLT_Traits;
}
/** \ingroup cholesky_Module
*
* \class LLT
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
*
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
* situations like generalised eigen problems with hermitian matrices.
*
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
* has a solution.
*
* \sa MatrixBase::llt(), class LDLT
*/
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename _MatrixType, int _UpLo> class LLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
PacketSize = internal::packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1,
UpLo = _UpLo
};
typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LLT::compute(const MatrixType&).
*/
LLT() : m_matrix(), m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LLT()
*/
LLT(Index size) : m_matrix(size, size),
m_isInitialized(false) {}
LLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_isInitialized(false)
{
compute(matrix);
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* Since this LLT class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out
*
* \sa solveInPlace(), MatrixBase::llt()
*/
template<typename Rhs>
inline const internal::solve_retval<LLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LLT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<LLT, Rhs>(*this, b.derived());
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = this->solve(b);
return true;
}
bool isPositiveDefinite() const { return true; }
#endif
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &bAndX) const;
LLT& compute(const MatrixType& matrix);
/** \returns the LLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLLT() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_info;
}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
protected:
/** \internal
* Used to compute and store L
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
bool m_isInitialized;
ComputationInfo m_info;
};
namespace internal {
template<int UpLo> struct llt_inplace;
template<> struct llt_inplace<Lower>
{
template<typename MatrixType>
static typename MatrixType::Index unblocked(MatrixType& mat)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
for(Index k = 0; k < size; ++k)
{
Index rs = size-k-1; // remaining size
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
RealScalar x = real(mat.coeff(k,k));
if (k>0) x -= A10.squaredNorm();
if (x<=RealScalar(0))
return k;
mat.coeffRef(k,k) = x = sqrt(x);
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
if (rs>0) A21 *= RealScalar(1)/x;
}
return -1;
}
template<typename MatrixType>
static typename MatrixType::Index blocked(MatrixType& m)
{
typedef typename MatrixType::Index Index;
eigen_assert(m.rows()==m.cols());
Index size = m.rows();
if(size<32)
return unblocked(m);
Index blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = std::min(std::max(blockSize,Index(8)), Index(128));
for (Index k=0; k<size; k+=blockSize)
{
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index bs = std::min(blockSize, size-k);
Index rs = size - k - bs;
Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
Index ret;
if((ret=unblocked(A11))>=0) return k+ret;
if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
}
return -1;
}
};
template<> struct llt_inplace<Upper>
{
template<typename MatrixType>
static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Lower>::unblocked(matt);
}
template<typename MatrixType>
static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Lower>::blocked(matt);
}
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
{
typedef TriangularView<MatrixType, Lower> MatrixL;
typedef TriangularView<typename MatrixType::AdjointReturnType, Upper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m; }
inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<Lower>::blocked(m)==-1; }
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
{
typedef TriangularView<typename MatrixType::AdjointReturnType, Lower> MatrixL;
typedef TriangularView<MatrixType, Upper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); }
inline static MatrixU getU(const MatrixType& m) { return m; }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<Upper>::blocked(m)==-1; }
};
} // end namespace internal
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*
*
* \returns a reference to *this
*/
template<typename MatrixType, int _UpLo>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix.resize(size, size);
m_matrix = a;
m_isInitialized = true;
bool ok = Traits::inplace_decomposition(m_matrix);
m_info = ok ? Success : NumericalIssue;
return *this;
}
namespace internal {
template<typename _MatrixType, int UpLo, typename Rhs>
struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
: solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
{
typedef LLT<_MatrixType,UpLo> LLTType;
EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dst = rhs();
dec().solveInPlace(dst);
}
};
}
/** \internal use x = llt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LLT::solve(), MatrixBase::llt()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==bAndX.rows());
matrixL().solveInPlace(bAndX);
matrixU().solveInPlace(bAndX);
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: L L^*.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return matrixL() * matrixL().adjoint().toDenseMatrix();
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
*/
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::llt() const
{
return LLT<PlainObject>(derived());
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
*/
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::llt() const
{
return LLT<PlainObject,UpLo>(m_matrix);
}
#endif // EIGEN_LLT_H
|