aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Cholesky/LLT.h
blob: 19578b2167cede6a7674a6621afe09eb2bd36d19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H

namespace Eigen {

namespace internal{
template<typename MatrixType, int UpLo> struct LLT_Traits;
}

/** \ingroup Cholesky_Module
  *
  * \class LLT
  *
  * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
  * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
  *             The other triangular part won't be read.
  *
  * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
  * matrix A such that A = LL^* = U^*U, where L is lower triangular.
  *
  * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like  D^*D x = b,
  * for that purpose, we recommend the Cholesky decomposition without square root which is more stable
  * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
  * situations like generalised eigen problems with hermitian matrices.
  *
  * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
  * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
  * has a solution.
  *
  * Example: \include LLT_example.cpp
  * Output: \verbinclude LLT_example.out
  *
  * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
  */
 /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
  * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
  * the strict lower part does not have to store correct values.
  */
template<typename _MatrixType, int _UpLo> class LLT
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
    typedef typename MatrixType::StorageIndex StorageIndex;

    enum {
      PacketSize = internal::packet_traits<Scalar>::size,
      AlignmentMask = int(PacketSize)-1,
      UpLo = _UpLo
    };

    typedef internal::LLT_Traits<MatrixType,UpLo> Traits;

    /**
      * \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via LLT::compute(const MatrixType&).
      */
    LLT() : m_matrix(), m_isInitialized(false) {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa LLT()
      */
    explicit LLT(Index size) : m_matrix(size, size),
                    m_isInitialized(false) {}

    template<typename InputType>
    explicit LLT(const EigenBase<InputType>& matrix)
      : m_matrix(matrix.rows(), matrix.cols()),
        m_isInitialized(false)
    {
      compute(matrix.derived());
    }

    /** \returns a view of the upper triangular matrix U */
    inline typename Traits::MatrixU matrixU() const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      return Traits::getU(m_matrix);
    }

    /** \returns a view of the lower triangular matrix L */
    inline typename Traits::MatrixL matrixL() const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      return Traits::getL(m_matrix);
    }

    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * Since this LLT class assumes anyway that the matrix A is invertible, the solution
      * theoretically exists and is unique regardless of b.
      *
      * Example: \include LLT_solve.cpp
      * Output: \verbinclude LLT_solve.out
      *
      * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt()
      */
    template<typename Rhs>
    inline const Solve<LLT, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      eigen_assert(m_matrix.rows()==b.rows()
                && "LLT::solve(): invalid number of rows of the right hand side matrix b");
      return Solve<LLT, Rhs>(*this, b.derived());
    }

    template<typename Derived>
    void solveInPlace(MatrixBase<Derived> &bAndX) const;

    template<typename InputType>
    LLT& compute(const EigenBase<InputType>& matrix);

    /** \returns an estimate of the reciprocal condition number of the matrix of
      *  which \c *this is the Cholesky decomposition.
      */
    RealScalar rcond() const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
      return internal::rcond_estimate_helper(m_l1_norm, *this);
    }

    /** \returns the LLT decomposition matrix
      *
      * TODO: document the storage layout
      */
    inline const MatrixType& matrixLLT() const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      return m_matrix;
    }

    MatrixType reconstructedMatrix() const;


    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix.appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "LLT is not initialized.");
      return m_info;
    }

    /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
      *
      * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
      * \code x = decomposition.adjoint().solve(b) \endcode
      */
    const LLT& adjoint() const { return *this; };

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }

    template<typename VectorType>
    LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);

    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename RhsType, typename DstType>
    EIGEN_DEVICE_FUNC
    void _solve_impl(const RhsType &rhs, DstType &dst) const;
    #endif

  protected:

    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    }

    /** \internal
      * Used to compute and store L
      * The strict upper part is not used and even not initialized.
      */
    MatrixType m_matrix;
    RealScalar m_l1_norm;
    bool m_isInitialized;
    ComputationInfo m_info;
};

namespace internal {

template<typename Scalar, int UpLo> struct llt_inplace;

template<typename MatrixType, typename VectorType>
static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
{
  using std::sqrt;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename MatrixType::ColXpr ColXpr;
  typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
  typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
  typedef Matrix<Scalar,Dynamic,1> TempVectorType;
  typedef typename TempVectorType::SegmentReturnType TempVecSegment;

  Index n = mat.cols();
  eigen_assert(mat.rows()==n && vec.size()==n);

  TempVectorType temp;

  if(sigma>0)
  {
    // This version is based on Givens rotations.
    // It is faster than the other one below, but only works for updates,
    // i.e., for sigma > 0
    temp = sqrt(sigma) * vec;

    for(Index i=0; i<n; ++i)
    {
      JacobiRotation<Scalar> g;
      g.makeGivens(mat(i,i), -temp(i), &mat(i,i));

      Index rs = n-i-1;
      if(rs>0)
      {
        ColXprSegment x(mat.col(i).tail(rs));
        TempVecSegment y(temp.tail(rs));
        apply_rotation_in_the_plane(x, y, g);
      }
    }
  }
  else
  {
    temp = vec;
    RealScalar beta = 1;
    for(Index j=0; j<n; ++j)
    {
      RealScalar Ljj = numext::real(mat.coeff(j,j));
      RealScalar dj = numext::abs2(Ljj);
      Scalar wj = temp.coeff(j);
      RealScalar swj2 = sigma*numext::abs2(wj);
      RealScalar gamma = dj*beta + swj2;

      RealScalar x = dj + swj2/beta;
      if (x<=RealScalar(0))
        return j;
      RealScalar nLjj = sqrt(x);
      mat.coeffRef(j,j) = nLjj;
      beta += swj2/dj;

      // Update the terms of L
      Index rs = n-j-1;
      if(rs)
      {
        temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
        if(gamma != 0)
          mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
      }
    }
  }
  return -1;
}

template<typename Scalar> struct llt_inplace<Scalar, Lower>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename MatrixType>
  static Index unblocked(MatrixType& mat)
  {
    using std::sqrt;

    eigen_assert(mat.rows()==mat.cols());
    const Index size = mat.rows();
    for(Index k = 0; k < size; ++k)
    {
      Index rs = size-k-1; // remaining size

      Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
      Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
      Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);

      RealScalar x = numext::real(mat.coeff(k,k));
      if (k>0) x -= A10.squaredNorm();
      if (x<=RealScalar(0))
        return k;
      mat.coeffRef(k,k) = x = sqrt(x);
      if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
      if (rs>0) A21 /= x;
    }
    return -1;
  }

  template<typename MatrixType>
  static Index blocked(MatrixType& m)
  {
    eigen_assert(m.rows()==m.cols());
    Index size = m.rows();
    if(size<32)
      return unblocked(m);

    Index blockSize = size/8;
    blockSize = (blockSize/16)*16;
    blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));

    for (Index k=0; k<size; k+=blockSize)
    {
      // partition the matrix:
      //       A00 |  -  |  -
      // lu  = A10 | A11 |  -
      //       A20 | A21 | A22
      Index bs = (std::min)(blockSize, size-k);
      Index rs = size - k - bs;
      Block<MatrixType,Dynamic,Dynamic> A11(m,k,   k,   bs,bs);
      Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k,   rs,bs);
      Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);

      Index ret;
      if((ret=unblocked(A11))>=0) return k+ret;
      if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
      if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
    }
    return -1;
  }

  template<typename MatrixType, typename VectorType>
  static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
  {
    return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
  }
};

template<typename Scalar> struct llt_inplace<Scalar, Upper>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;

  template<typename MatrixType>
  static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat)
  {
    Transpose<MatrixType> matt(mat);
    return llt_inplace<Scalar, Lower>::unblocked(matt);
  }
  template<typename MatrixType>
  static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat)
  {
    Transpose<MatrixType> matt(mat);
    return llt_inplace<Scalar, Lower>::blocked(matt);
  }
  template<typename MatrixType, typename VectorType>
  static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
  {
    Transpose<MatrixType> matt(mat);
    return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
  }
};

template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
{
  typedef const TriangularView<const MatrixType, Lower> MatrixL;
  typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
  static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
  static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
  static bool inplace_decomposition(MatrixType& m)
  { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
};

template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
{
  typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
  typedef const TriangularView<const MatrixType, Upper> MatrixU;
  static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
  static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
  static bool inplace_decomposition(MatrixType& m)
  { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
};

} // end namespace internal

/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
  *
  * \returns a reference to *this
  *
  * Example: \include TutorialLinAlgComputeTwice.cpp
  * Output: \verbinclude TutorialLinAlgComputeTwice.out
  */
template<typename MatrixType, int _UpLo>
template<typename InputType>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
{
  check_template_parameters();

  eigen_assert(a.rows()==a.cols());
  const Index size = a.rows();
  m_matrix.resize(size, size);
  m_matrix = a.derived();

  // Compute matrix L1 norm = max abs column sum.
  m_l1_norm = RealScalar(0);
  // TODO move this code to SelfAdjointView
  for (Index col = 0; col < size; ++col) {
    RealScalar abs_col_sum;
    if (_UpLo == Lower)
      abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
    else
      abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
    if (abs_col_sum > m_l1_norm)
      m_l1_norm = abs_col_sum;
  }

  m_isInitialized = true;
  bool ok = Traits::inplace_decomposition(m_matrix);
  m_info = ok ? Success : NumericalIssue;

  return *this;
}

/** Performs a rank one update (or dowdate) of the current decomposition.
  * If A = LL^* before the rank one update,
  * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
  * of same dimension.
  */
template<typename _MatrixType, int _UpLo>
template<typename VectorType>
LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
{
  EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
  eigen_assert(v.size()==m_matrix.cols());
  eigen_assert(m_isInitialized);
  if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
    m_info = NumericalIssue;
  else
    m_info = Success;

  return *this;
}

#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType,int _UpLo>
template<typename RhsType, typename DstType>
void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
  dst = rhs;
  solveInPlace(dst);
}
#endif

/** \internal use x = llt_object.solve(x);
  *
  * This is the \em in-place version of solve().
  *
  * \param bAndX represents both the right-hand side matrix b and result x.
  *
  * This version avoids a copy when the right hand side matrix b is not needed anymore.
  *
  * \sa LLT::solve(), MatrixBase::llt()
  */
template<typename MatrixType, int _UpLo>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
  eigen_assert(m_isInitialized && "LLT is not initialized.");
  eigen_assert(m_matrix.rows()==bAndX.rows());
  matrixL().solveInPlace(bAndX);
  matrixU().solveInPlace(bAndX);
}

/** \returns the matrix represented by the decomposition,
 * i.e., it returns the product: L L^*.
 * This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
  eigen_assert(m_isInitialized && "LLT is not initialized.");
  return matrixL() * matrixL().adjoint().toDenseMatrix();
}

#ifndef __CUDACC__
/** \cholesky_module
  * \returns the LLT decomposition of \c *this
  * \sa SelfAdjointView::llt()
  */
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::llt() const
{
  return LLT<PlainObject>(derived());
}

/** \cholesky_module
  * \returns the LLT decomposition of \c *this
  * \sa SelfAdjointView::llt()
  */
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::llt() const
{
  return LLT<PlainObject,UpLo>(m_matrix);
}
#endif // __CUDACC__

} // end namespace Eigen

#endif // EIGEN_LLT_H