aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Cholesky/LDLT.h
blob: c8d92f3c070fe1ec036d6aa6511db24660bc7b19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H

/** \ingroup cholesky_Module
  *
  * \class LDLT
  *
  * \brief Robust Cholesky decomposition of a matrix
  *
  * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
  *
  * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
  * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L
  * is lower triangular with a unit diagonal and D is a diagonal matrix.
  *
  * The decomposition uses pivoting to ensure stability, so that L will have
  * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
  * on D also stabilizes the computation.
  *
  * Remember that Cholesky decompositions are not rank-revealing.  Also, do not use a Cholesky decomposition to determine
  * whether a system of equations has a solution.
  *
  * \sa MatrixBase::ldlt(), class LLT
  */
 /* THIS PART OF THE DOX IS CURRENTLY DISABLED BECAUSE INACCURATE BECAUSE OF BUG IN THE DECOMPOSITION CODE
  * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
  * the strict lower part does not have to store correct values.
  */
template<typename MatrixType> class LDLT
{
  public:

    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
    typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
    typedef Matrix<int, 1, MatrixType::RowsAtCompileTime> IntRowVectorType;

    /**
    * \brief Default Constructor.
    *
    * The default constructor is useful in cases in which the user intends to
    * perform decompositions via LDLT::compute(const MatrixType&).
    */
    LDLT() : m_matrix(), m_p(), m_transpositions(), m_isInitialized(false) {}

    LDLT(const MatrixType& matrix)
      : m_matrix(matrix.rows(), matrix.cols()),
        m_p(matrix.rows()),
        m_transpositions(matrix.rows()),
        m_isInitialized(false)
    {
      compute(matrix);
    }

    /** \returns the lower triangular matrix L */
    inline TriangularView<MatrixType, UnitLowerTriangular> matrixL(void) const
    { 
      ei_assert(m_isInitialized && "LDLT is not initialized.");
      return m_matrix;
    }

    /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
      * representing the P permutation i.e. the permutation of the rows. For its precise meaning,
      * see the examples given in the documentation of class LU.
      */
    inline const IntColVectorType& permutationP() const
    {
      ei_assert(m_isInitialized && "LDLT is not initialized.");
      return m_p;
    }

    /** \returns the coefficients of the diagonal matrix D */
    inline Diagonal<MatrixType,0> vectorD(void) const
    {
      ei_assert(m_isInitialized && "LDLT is not initialized.");
      return m_matrix.diagonal();
    }

    /** \returns true if the matrix is positive (semidefinite) */
    inline bool isPositive(void) const
    {
      ei_assert(m_isInitialized && "LDLT is not initialized.");
      return m_sign == 1;
    }

    /** \returns true if the matrix is negative (semidefinite) */
    inline bool isNegative(void) const
    {
      ei_assert(m_isInitialized && "LDLT is not initialized.");
      return m_sign == -1;
    }

    template<typename RhsDerived, typename ResultType>
    bool solve(const MatrixBase<RhsDerived> &b, ResultType *result) const;

    template<typename Derived>
    bool solveInPlace(MatrixBase<Derived> &bAndX) const;

    LDLT& compute(const MatrixType& matrix);

  protected:
    /** \internal
      * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
      * The strict upper part is used during the decomposition, the strict lower
      * part correspond to the coefficients of L (its diagonal is equal to 1 and
      * is not stored), and the diagonal entries correspond to D.
      */
    MatrixType m_matrix;
    IntColVectorType m_p;
    IntColVectorType m_transpositions;
    int m_sign;
    bool m_isInitialized;
};

/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
  */
template<typename MatrixType>
LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a)
{
  ei_assert(a.rows()==a.cols());
  const int size = a.rows();

  m_matrix = a;

  if (size <= 1) {
    m_p.setZero();
    m_transpositions.setZero();
    m_sign = ei_real(a.coeff(0,0))>0 ? 1:-1;
    m_isInitialized = true;
    return *this;
  }

  RealScalar cutoff = 0, biggest_in_corner;

  // By using a temorary, packet-aligned products are guarenteed. In the LLT
  // case this is unnecessary because the diagonal is included and will always
  // have optimal alignment.
  Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);

  for (int j = 0; j < size; ++j)
  {
    // Find largest diagonal element
    int index_of_biggest_in_corner;
    biggest_in_corner = m_matrix.diagonal().end(size-j).cwise().abs()
                       .maxCoeff(&index_of_biggest_in_corner);
    index_of_biggest_in_corner += j;

    if(j == 0)
    {
      // The biggest overall is the point of reference to which further diagonals
      // are compared; if any diagonal is negligible compared
      // to the largest overall, the algorithm bails.  This cutoff is suggested
      // in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
      // Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
      // Algorithms" page 217, also by Higham.
      cutoff = ei_abs(epsilon<Scalar>() * size * biggest_in_corner);

      m_sign = ei_real(m_matrix.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
    }

    // Finish early if the matrix is not full rank.
    if(biggest_in_corner < cutoff)
    {
      for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
      break;
    }

    m_transpositions.coeffRef(j) = index_of_biggest_in_corner;
    if(j != index_of_biggest_in_corner)
    {
      m_matrix.row(j).swap(m_matrix.row(index_of_biggest_in_corner));
      m_matrix.col(j).swap(m_matrix.col(index_of_biggest_in_corner));
    }

    if (j == 0) {
      m_matrix.row(0) = m_matrix.row(0).conjugate();
      m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0);
      continue;
    }

    RealScalar Djj = ei_real(m_matrix.coeff(j,j) -  m_matrix.row(j).start(j)
                                               .dot(m_matrix.col(j).start(j)));
    m_matrix.coeffRef(j,j) = Djj;

    // Finish early if the matrix is not full rank.
    if(ei_abs(Djj) < cutoff)
    {
      for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
      break;
    }

    int endSize = size - j - 1;
    if (endSize > 0) {
      _temporary.end(endSize).noalias() = m_matrix.block(j+1,0, endSize, j)
                                * m_matrix.col(j).start(j).conjugate();

      m_matrix.row(j).end(endSize) = m_matrix.row(j).end(endSize).conjugate()
                                   - _temporary.end(endSize).transpose();

      m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / Djj;
    }
  }

  // Reverse applied swaps to get P matrix.
  for(int k = 0; k < size; ++k) m_p.coeffRef(k) = k;
  for(int k = size-1; k >= 0; --k) {
    std::swap(m_p.coeffRef(k), m_p.coeffRef(m_transpositions.coeff(k)));
  }

  m_isInitialized = true;
  return *this;
}

/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
  * The result is stored in \a result
  *
  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
  *
  * In other words, it computes \f$ b = A^{-1} b \f$ with
  * \f$ P^T{L^{*}}^{-1} D^{-1} L^{-1} P b \f$ from right to left.
  *
  * \sa LDLT::solveInPlace(), MatrixBase::ldlt()
  */
template<typename MatrixType>
template<typename RhsDerived, typename ResultType>
bool LDLT<MatrixType>
::solve(const MatrixBase<RhsDerived> &b, ResultType *result) const
{
  ei_assert(m_isInitialized && "LDLT is not initialized.");
  const int size = m_matrix.rows();
  ei_assert(size==b.rows() && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
  *result = b;
  return solveInPlace(*result);
}

/** This is the \em in-place version of solve().
  *
  * \param bAndX represents both the right-hand side matrix b and result x.
  *
  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
  *
  * This version avoids a copy when the right hand side matrix b is not
  * needed anymore.
  *
  * \sa LDLT::solve(), MatrixBase::ldlt()
  */
template<typename MatrixType>
template<typename Derived>
bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
  ei_assert(m_isInitialized && "LDLT is not initialized.");
  const int size = m_matrix.rows();
  ei_assert(size == bAndX.rows());

  // z = P b
  for(int i = 0; i < size; ++i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));

  // y = L^-1 z
  //matrixL().solveInPlace(bAndX);
  m_matrix.template triangularView<UnitLowerTriangular>().solveInPlace(bAndX);

  // w = D^-1 y
  bAndX = (m_matrix.diagonal().cwise().inverse().asDiagonal() * bAndX).lazy();

  // u = L^-T w
  m_matrix.adjoint().template triangularView<UnitUpperTriangular>().solveInPlace(bAndX);

  // x = P^T u
  for (int i = size-1; i >= 0; --i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));

  return true;
}

/** \cholesky_module
  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
  */
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainMatrixType>
MatrixBase<Derived>::ldlt() const
{
  return derived();
}

#endif // EIGEN_LDLT_H