aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Cholesky/CholeskyWithoutSquareRoot.h
blob: ac26c88b16ce2a29c9d138287526c7ea19e6f9b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_CHOLESKY_WITHOUT_SQUARE_ROOT_H
#define EIGEN_CHOLESKY_WITHOUT_SQUARE_ROOT_H

/** \ingroup Cholesky_Module
  *
  * \class CholeskyWithoutSquareRoot
  *
  * \brief Robust Cholesky decomposition of a matrix and associated features
  *
  * \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
  *
  * This class performs a Cholesky decomposition without square root of a symmetric, positive definite
  * matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal
  * and D is a diagonal matrix.
  *
  * Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more
  * stable computation.
  *
  * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
  * the strict lower part does not have to store correct values.
  *
  * \sa MatrixBase::choleskyNoSqrt(), class Cholesky
  */
template<typename MatrixType> class CholeskyWithoutSquareRoot
{
  public:

    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;

    CholeskyWithoutSquareRoot(const MatrixType& matrix)
      : m_matrix(matrix.rows(), matrix.cols())
    {
      compute(matrix);
    }

    /** \returns the lower triangular matrix L */
    inline Part<MatrixType, UnitLower> matrixL(void) const { return m_matrix; }

    /** \returns the coefficients of the diagonal matrix D */
    inline DiagonalCoeffs<MatrixType> vectorD(void) const { return m_matrix.diagonal(); }

    /** \returns true if the matrix is positive definite */
    inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }

    template<typename Derived>
    typename Derived::Eval solve(const MatrixBase<Derived> &b) const;

    void compute(const MatrixType& matrix);

  protected:
    /** \internal
      * Used to compute and store the cholesky decomposition A = L D L^* = U^* D U.
      * The strict upper part is used during the decomposition, the strict lower
      * part correspond to the coefficients of L (its diagonal is equal to 1 and
      * is not stored), and the diagonal entries correspond to D.
      */
    MatrixType m_matrix;

    bool m_isPositiveDefinite;
};

/** Compute / recompute the Cholesky decomposition A = L D L^* = U^* D U of \a matrix
  */
template<typename MatrixType>
void CholeskyWithoutSquareRoot<MatrixType>::compute(const MatrixType& a)
{
  assert(a.rows()==a.cols());
  const int size = a.rows();
  m_matrix.resize(size, size);
  m_isPositiveDefinite = true;

  // Let's preallocate a temporay vector to evaluate the matrix-vector product into it.
  // Unlike the standard Cholesky decomposition, here we cannot evaluate it to the destination
  // matrix because it a sub-row which is not compatible suitable for efficient packet evaluation.
  // (at least if we assume the matrix is col-major)
  Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);

  // Note that, in this algorithm the rows of the strict upper part of m_matrix is used to store
  // column vector, thus the strange .conjugate() and .transpose()...

  m_matrix.row(0) = a.row(0).conjugate();
  m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0);
  for (int j = 1; j < size; ++j)
  {
    RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0));
    m_matrix.coeffRef(j,j) = tmp;

    if (ei_isMuchSmallerThan(tmp,RealScalar(1)))
    {
      m_isPositiveDefinite = false;
      return;
    }

    int endSize = size-j-1;
    if (endSize>0)
    {
      _temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j)
                                  * m_matrix.col(j).start(j).conjugate() ).lazy();

      m_matrix.row(j).end(endSize) = a.row(j).end(endSize).conjugate()
                                   - _temporary.end(endSize).transpose();

      m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / tmp;
    }
  }
}

/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
  * In other words, it returns \f$ A^{-1} b \f$ computing
  * \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
  * \param b the column vector \f$ b \f$, which can also be a matrix.
  *
  * See Cholesky::solve() for a example.
  * 
  * \sa MatrixBase::choleskyNoSqrt()
  */
template<typename MatrixType>
template<typename Derived>
typename Derived::Eval CholeskyWithoutSquareRoot<MatrixType>::solve(const MatrixBase<Derived> &b) const
{
  const int size = m_matrix.rows();
  ei_assert(size==b.rows());

  return m_matrix.adjoint().template part<UnitUpper>()
    .inverseProduct(
      (matrixL()
        .inverseProduct(b))
        .cwise()/m_matrix.diagonal()
      );
}

/** \cholesky_module
  * \returns the Cholesky decomposition without square root of \c *this
  */
template<typename Derived>
inline const CholeskyWithoutSquareRoot<typename ei_eval<Derived>::type>
MatrixBase<Derived>::choleskyNoSqrt() const
{
  return derived();
}

#endif // EIGEN_CHOLESKY_WITHOUT_SQUARE_ROOT_H