aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Cholesky/Cholesky.h
blob: 4feeee7c6e076ffbc01aea333729f3e779bab503 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_CHOLESKY_H
#define EIGEN_CHOLESKY_H

/** \ingroup Cholesky_Module
  *
  * \class Cholesky
  *
  * \brief Standard Cholesky decomposition of a matrix and associated features
  *
  * \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
  *
  * This class performs a standard Cholesky decomposition of a symmetric, positive definite
  * matrix A such that A = LL^* = U^*U, where L is lower triangular.
  *
  * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like  D^*D x = b,
  * for that purpose, we recommend the Cholesky decomposition without square root which is more stable
  * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
  * situations like generalised eigen problems with hermitian matrices.
  *
  * Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
  * the strict lower part does not have to store correct values.
  *
  * \sa MatrixBase::cholesky(), class CholeskyWithoutSquareRoot
  */
template<typename MatrixType> class Cholesky
{
  public:

    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;

    Cholesky(const MatrixType& matrix)
      : m_matrix(matrix.rows(), matrix.cols())
    {
      compute(matrix);
    }

    Part<MatrixType, Lower> matrixL(void) const
    {
      return m_matrix;
    }

    bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }

    template<typename Derived>
    typename Derived::Eval solve(const MatrixBase<Derived> &b) const;

    void compute(const MatrixType& matrix);

  protected:
    /** \internal
      * Used to compute and store L
      * The strict upper part is not used and even not initialized.
      */
    MatrixType m_matrix;
    bool m_isPositiveDefinite;
};

/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
  */
template<typename MatrixType>
void Cholesky<MatrixType>::compute(const MatrixType& a)
{
  assert(a.rows()==a.cols());
  const int size = a.rows();
  m_matrix.resize(size, size);

  RealScalar x;
  x = ei_real(a.coeff(0,0));
  m_isPositiveDefinite = x > RealScalar(0) && ei_isMuchSmallerThan(ei_imag(m_matrix.coeff(0,0)), RealScalar(1));
  m_matrix.coeffRef(0,0) = ei_sqrt(x);
  m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / m_matrix.coeff(0,0);
  for (int j = 1; j < size; ++j)
  {
    Scalar tmp = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).norm2();
    x = ei_real(tmp);
    m_isPositiveDefinite = m_isPositiveDefinite && x > RealScalar(0) && ei_isMuchSmallerThan(ei_imag(tmp), RealScalar(1));
    m_matrix.coeffRef(j,j) = x = ei_sqrt(x);

    int endSize = size-j-1;
    if (endSize>0)
      m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint()
        - m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()) / x;
  }
}

/** \returns the solution of \f$ A x = b \f$ using the current decomposition of A.
  * In other words, it returns \f$ A^{-1} b \f$ computing
  * \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
  * \param b the column vector \f$ b \f$, which can also be a matrix.
  *
  * Example: \include Cholesky_solve.cpp
  * Output: \verbinclude Cholesky_solve.out
  *
  * \sa MatrixBase::cholesky(), CholeskyWithoutSquareRoot::solve()
  */
template<typename MatrixType>
template<typename Derived>
typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b) const
{
  const int size = m_matrix.rows();
  ei_assert(size==b.rows());

  return m_matrix.adjoint().template part<Upper>().inverseProduct(matrixL().inverseProduct(b));
}

/** \cholesky_module
  * \returns the Cholesky decomposition of \c *this
  */
template<typename Derived>
inline const Cholesky<typename ei_eval<Derived>::type>
MatrixBase<Derived>::cholesky() const
{
  return Cholesky<typename ei_eval<Derived>::type>(derived());
}

#endif // EIGEN_CHOLESKY_H