aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/Core/MatrixBase.h
blob: 85fca57afd6c6ab469ec36839311103a7c0642e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.

#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H

/** \class MatrixBase
  *
  * \brief Base class for all matrices, vectors, and expressions
  *
  * This class is the base that is inherited by all matrix, vector, and expression
  * types. Most of the Eigen API is contained in this class.
  *
  * This class takes two template parameters:
  * \param Scalar the type of the coefficients, e.g. float, double, etc.
  * \param Derived the derived type, e.g. a matrix type, or an expression, etc.
  * Indeed, a separate MatrixBase type is generated for each derived type
  * so one knows from inside MatrixBase, at compile-time, what the derived type is.
  *
  * When writing a function taking Eigen objects as argument, if you want your function
  * to take as argument any matrix, vector, or expression, just let it take a
  * MatrixBase argument. As an example, here is a function printFirstRow which, given
  * a matrix, vector, or expression \a x, prints the first row of \a x.
  *
  * \code
    template<typename Scalar, typename Derived>
    void printFirstRow(const Eigen::MatrixBase<Scalar, Derived>& x)
    {
      cout << x.row(0) << endl;
    }
  * \endcode
  */
template<typename Scalar, typename Derived> class MatrixBase
{
  public:
    /** The number of rows at compile-time. This is just a copy of the value provided
      * by the \a Derived type. If a value is not known at compile-time,
      * it is set to the \a Dynamic constant.
      * \sa rows(), cols(), ColsAtCompileTime, SizeAtCompileTime */
    static const int RowsAtCompileTime = Derived::_RowsAtCompileTime;
    
    /** The number of columns at compile-time. This is just a copy of the value provided
      * by the \a Derived type. If a value is not known at compile-time,
      * it is set to the \a Dynamic constant.
      * \sa rows(), cols(), RowsAtCompileTime, SizeAtCompileTime */
    static const int ColsAtCompileTime = Derived::_ColsAtCompileTime;
    
    /** This is equal to the number of coefficients, i.e. the number of
      * rows times the number of columns, or to \a Dynamic if this is not
      * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
    static const int SizeAtCompileTime
      = RowsAtCompileTime == Dynamic || ColsAtCompileTime == Dynamic
      ? Dynamic : RowsAtCompileTime * ColsAtCompileTime;
    /** This is set to true if either the number of rows or the number of
      * columns is known at compile-time to be equal to 1. Indeed, in that case,
      * we are dealing with a column-vector (if there is only one column) or with
      * a row-vector (if there is only one row). */
    static const bool IsVector = RowsAtCompileTime == 1 || ColsAtCompileTime == 1;
    
    /** This is the "reference type" used to pass objects of type MatrixBase as arguments
      * to functions. If this MatrixBase type represents an expression, then \a Ref
      * is just this MatrixBase type itself, i.e. expressions are just passed by value
      * and the compiler is usually clever enough to optimize that. If, on the
      * other hand, this MatrixBase type is an actual matrix or vector type, then \a Ref is
      * a typedef to MatrixRef, which works as a reference, so that matrices and vectors
      * are passed by reference, not by value. \sa ref()*/
    typedef typename ForwardDecl<Derived>::Ref Ref;
    
    /** This is the "real scalar" type; if the \a Scalar type is already real numbers
      * (e.g. int, float or double) then RealScalar is just the same as \a Scalar. If
      * \a Scalar is \a std::complex<T> then RealScalar is \a T. */
    typedef typename NumTraits<Scalar>::Real RealScalar;
    
    /** \returns the number of rows. \sa cols(), RowsAtCompileTime */
    int rows() const { return static_cast<const Derived *>(this)->_rows(); }
    /** \returns the number of columns. \sa row(), ColsAtCompileTime*/
    int cols() const { return static_cast<const Derived *>(this)->_cols(); }
    /** \returns the number of coefficients, which is \a rows()*cols().
      * \sa rows(), cols(). */
    int size() const { return rows() * cols(); }
    
    /** \returns a Ref to *this. \sa Ref */
    Ref ref() const
    { return static_cast<const Derived *>(this)->_ref(); }
    
    /** Copies \a other into *this. \returns a reference to *this. */
    template<typename OtherDerived>
    Derived& operator=(const MatrixBase<Scalar, OtherDerived>& other);
    
    // Special case of the above template operator=, in order to prevent the compiler
    //from generating a default operator= (issue hit with g++ 4.1)
    Derived& operator=(const MatrixBase& other)
    {
      return this->operator=<Derived>(other);
    }
    
    template<typename NewScalar> const Cast<NewScalar, Derived> cast() const;
    
    Row<Derived> row(int i) const;
    Column<Derived> col(int i) const;
    Minor<Derived> minor(int row, int col) const;
    DynBlock<Derived> dynBlock(int startRow, int startCol,
                               int blockRows, int blockCols) const;
    template<int BlockRows, int BlockCols>
    Block<Derived, BlockRows, BlockCols> block(int startRow, int startCol) const;
    
    Transpose<Derived> transpose() const;
    const Conjugate<Derived> conjugate() const;
    const Transpose<Conjugate<Derived> > adjoint() const;
    Scalar trace() const;
    
    template<typename OtherDerived>
    Scalar dot(const OtherDerived& other) const;
    RealScalar norm2() const;
    RealScalar norm()  const;
    ScalarMultiple<Derived> normalized() const;
    
    static Eval<Random<Derived> > random(int rows, int cols);
    static Eval<Random<Derived> > random(int size);
    static Eval<Random<Derived> > random();
    static const Zero<Derived> zero(int rows, int cols);
    static const Zero<Derived> zero(int size);
    static const Zero<Derived> zero();
    static const Ones<Derived> ones(int rows, int cols);
    static const Ones<Derived> ones(int size);
    static const Ones<Derived> ones();
    static const Identity<Derived> identity(int rows = RowsAtCompileTime);
    
    template<typename OtherDerived>
    static const DiagonalMatrix<Derived, OtherDerived>
    diagonal(const OtherDerived& coeffs);
    DiagonalCoeffs<Derived> diagonal() const;
    
    static const Map<Derived> map(const Scalar* array, int rows, int cols);
    static const Map<Derived> map(const Scalar* array, int size);
    static const Map<Derived> map(const Scalar* array);
    static Map<Derived> map(Scalar* array, int rows, int cols);
    static Map<Derived> map(Scalar* array, int size);
    static Map<Derived> map(Scalar* array);
    
    template<typename OtherDerived>
    bool isApprox(
      const OtherDerived& other,
      const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
    ) const;
    bool isMuchSmallerThan(
      const typename NumTraits<Scalar>::Real& other,
      const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
    ) const;
    template<typename OtherDerived>
    bool isMuchSmallerThan(
      const MatrixBase<Scalar, OtherDerived>& other,
      const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
    ) const;
    
    template<typename OtherDerived>
    const Product<Derived, OtherDerived>
    lazyProduct(const MatrixBase<Scalar, OtherDerived>& other) const EIGEN_ALWAYS_INLINE;
    
    const Opposite<Derived> operator-() const;
    
    template<typename OtherDerived>
    Derived& operator+=(const MatrixBase<Scalar, OtherDerived>& other);
    template<typename OtherDerived>
    Derived& operator-=(const MatrixBase<Scalar, OtherDerived>& other);
    template<typename OtherDerived>
    Derived& operator*=(const MatrixBase<Scalar, OtherDerived>& other);
   
    Derived& operator*=(const int& other);
    Derived& operator*=(const float& other);
    Derived& operator*=(const double& other);
    Derived& operator*=(const std::complex<float>& other);
    Derived& operator*=(const std::complex<double>& other);
    
    Derived& operator/=(const int& other);
    Derived& operator/=(const float& other);
    Derived& operator/=(const double& other);
    Derived& operator/=(const std::complex<float>& other);
    Derived& operator/=(const std::complex<double>& other);

    Scalar coeff(int row, int col) const;
    Scalar operator()(int row, int col) const;
    
    Scalar& coeffRef(int row, int col);
    Scalar& operator()(int row, int col);
    
    Scalar coeff(int index) const;
    Scalar operator[](int index) const;
    
    Scalar& coeffRef(int index);
    Scalar& operator[](int index);
    
    Scalar x() const;
    Scalar y() const;
    Scalar z() const;
    Scalar w() const;
    Scalar& x();
    Scalar& y();
    Scalar& z();
    Scalar& w();

    Eval<Derived> eval() const EIGEN_ALWAYS_INLINE;
};

#endif // EIGEN_MATRIXBASE_H