aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/Core/MathFunctions.h
blob: 0647e943f7988f1ae5a735543bec3d04551d1c9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.

#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H

template<typename T> inline typename NumTraits<T>::Real precision();
template<typename T> inline T random(T a, T b);
template<typename T> inline T random();

template<> inline int precision<int>() { return 0; }
inline int real(int x)  { return x; }
inline int imag(int)    { return 0; }
inline int conj(int x)  { return x; }
inline int abs(int x)   { return std::abs(x); }
inline int abs2(int x)  { return x*x; }
inline int sqrt(int)
{
  // Taking the square root of integers is not allowed
  // (the square root does not always exist within the integers).
  // Please cast to a floating-point type.
  assert(false);
  return 0;
}
template<> inline int random(int a, int b)
{
  // We can't just do rand()%n as only the high-order bits are really random
  return a + static_cast<int>((b-a+1) * (rand() / (RAND_MAX + 1.0)));
}
template<> inline int random()
{
  return random<int>(-10, 10);
}
inline bool isMuchSmallerThan(int a, int, int = precision<int>())
{
  return a == 0;
}
inline bool isApprox(int a, int b, int = precision<int>())
{
  return a == b;
}
inline bool isApproxOrLessThan(int a, int b, int = precision<int>())
{
  return a <= b;
}

template<> inline float precision<float>() { return 1e-5f; }
inline float real(float x)  { return x; }
inline float imag(float)    { return 0.f; }
inline float conj(float x)  { return x; }
inline float abs(float x)   { return std::abs(x); }
inline float abs2(float x)  { return x*x; }
inline float sqrt(float x)  { return std::sqrt(x); }
template<> inline float random(float a, float b)
{
  return a + (b-a) * std::rand() / RAND_MAX;
}
template<> inline float random()
{
  return random<float>(-10.0f, 10.0f);
}
inline bool isMuchSmallerThan(float a, float b, float prec = precision<float>())
{
  return std::abs(a) <= std::abs(b) * prec;
}
inline bool isApprox(float a, float b, float prec = precision<float>())
{
  return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
}
inline bool isApproxOrLessThan(float a, float b, float prec = precision<float>())
{
  return a <= b || isApprox(a, b, prec);
}

template<> inline double precision<double>() { return 1e-11; }
inline double real(double x)  { return x; }
inline double imag(double)    { return 0.; }
inline double conj(double x)  { return x; }
inline double abs(double x)   { return std::abs(x); }
inline double abs2(double x)  { return x*x; }
inline double sqrt(double x)  { return std::sqrt(x); }
template<> inline double random(double a, double b)
{
  return a + (b-a) * std::rand() / RAND_MAX;
}
template<> inline double random()
{
  return random<double>(-10.0, 10.0);
}
inline bool isMuchSmallerThan(double a, double b, double prec = precision<double>())
{
  return std::abs(a) <= std::abs(b) * prec;
}
inline bool isApprox(double a, double b, double prec = precision<double>())
{
  return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
}
inline bool isApproxOrLessThan(double a, double b, double prec = precision<double>())
{
  return a <= b || isApprox(a, b, prec);
}

template<> inline float precision<std::complex<float> >() { return precision<float>(); }
inline float real(const std::complex<float>& x) { return std::real(x); }
inline float imag(const std::complex<float>& x) { return std::imag(x); }
inline std::complex<float> conj(const std::complex<float>& x) { return std::conj(x); }
inline float abs(const std::complex<float>& x) { return std::abs(x); }
inline float abs2(const std::complex<float>& x) { return std::norm(x); }
inline std::complex<float> sqrt(const std::complex<float>&)
{
  // Taking the square roots of complex numbers is not allowed,
  // as this is ambiguous (there are two square roots).
  // What were you trying to do?
  assert(false);
  return 0;
}
template<> inline std::complex<float> random()
{
  return std::complex<float>(random<float>(), random<float>());
}
inline bool isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
{
  return abs2(a) <= abs2(b) * prec * prec;
}
inline bool isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
{
  return isApprox(std::real(a), std::real(b), prec)
      && isApprox(std::imag(a), std::imag(b), prec);
}
// isApproxOrLessThan wouldn't make sense for complex numbers

template<> inline double precision<std::complex<double> >() { return precision<double>(); }
inline double real(const std::complex<double>& x) { return std::real(x); }
inline double imag(const std::complex<double>& x) { return std::imag(x); }
inline std::complex<double> conj(const std::complex<double>& x) { return std::conj(x); }
inline double abs(const std::complex<double>& x) { return std::abs(x); }
inline double abs2(const std::complex<double>& x) { return std::norm(x); }
template<> inline std::complex<double> random()
{
  return std::complex<double>(random<double>(), random<double>());
}
inline bool isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
{
  return abs2(a) <= abs2(b) * prec * prec;
}
inline bool isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
{
  return isApprox(std::real(a), std::real(b), prec)
      && isApprox(std::imag(a), std::imag(b), prec);
}
// isApproxOrLessThan wouldn't make sense for complex numbers

#endif // EIGEN_MATHFUNCTIONS_H