aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/EulerAngles.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/test/EulerAngles.cpp')
-rw-r--r--unsupported/test/EulerAngles.cpp208
1 files changed, 208 insertions, 0 deletions
diff --git a/unsupported/test/EulerAngles.cpp b/unsupported/test/EulerAngles.cpp
new file mode 100644
index 000000000..a8cb52864
--- /dev/null
+++ b/unsupported/test/EulerAngles.cpp
@@ -0,0 +1,208 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+#include <unsupported/Eigen/EulerAngles>
+
+using namespace Eigen;
+
+template<typename EulerSystem, typename Scalar>
+void verify_euler_ranged(const Matrix<Scalar,3,1>& ea,
+ bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma)
+{
+ typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
+ typedef Matrix<Scalar,3,3> Matrix3;
+ typedef Matrix<Scalar,3,1> Vector3;
+ typedef Quaternion<Scalar> QuaternionType;
+ typedef AngleAxis<Scalar> AngleAxisType;
+ using std::abs;
+
+ Scalar alphaRangeStart, alphaRangeEnd;
+ Scalar betaRangeStart, betaRangeEnd;
+ Scalar gammaRangeStart, gammaRangeEnd;
+
+ if (positiveRangeAlpha)
+ {
+ alphaRangeStart = Scalar(0);
+ alphaRangeEnd = Scalar(2 * EIGEN_PI);
+ }
+ else
+ {
+ alphaRangeStart = -Scalar(EIGEN_PI);
+ alphaRangeEnd = Scalar(EIGEN_PI);
+ }
+
+ if (positiveRangeBeta)
+ {
+ betaRangeStart = Scalar(0);
+ betaRangeEnd = Scalar(2 * EIGEN_PI);
+ }
+ else
+ {
+ betaRangeStart = -Scalar(EIGEN_PI);
+ betaRangeEnd = Scalar(EIGEN_PI);
+ }
+
+ if (positiveRangeGamma)
+ {
+ gammaRangeStart = Scalar(0);
+ gammaRangeEnd = Scalar(2 * EIGEN_PI);
+ }
+ else
+ {
+ gammaRangeStart = -Scalar(EIGEN_PI);
+ gammaRangeEnd = Scalar(EIGEN_PI);
+ }
+
+ const int i = EulerSystem::AlphaAxisAbs - 1;
+ const int j = EulerSystem::BetaAxisAbs - 1;
+ const int k = EulerSystem::GammaAxisAbs - 1;
+
+ const int iFactor = EulerSystem::IsAlphaOpposite ? -1 : 1;
+ const int jFactor = EulerSystem::IsBetaOpposite ? -1 : 1;
+ const int kFactor = EulerSystem::IsGammaOpposite ? -1 : 1;
+
+ const Vector3 I = EulerAnglesType::AlphaAxisVector();
+ const Vector3 J = EulerAnglesType::BetaAxisVector();
+ const Vector3 K = EulerAnglesType::GammaAxisVector();
+
+ EulerAnglesType e(ea[0], ea[1], ea[2]);
+
+ Matrix3 m(e);
+ Vector3 eabis = EulerAnglesType(m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
+
+ // Check that eabis in range
+ VERIFY(alphaRangeStart <= eabis[0] && eabis[0] <= alphaRangeEnd);
+ VERIFY(betaRangeStart <= eabis[1] && eabis[1] <= betaRangeEnd);
+ VERIFY(gammaRangeStart <= eabis[2] && eabis[2] <= gammaRangeEnd);
+
+ Vector3 eabis2 = m.eulerAngles(i, j, k);
+
+ // Invert the relevant axes
+ eabis2[0] *= iFactor;
+ eabis2[1] *= jFactor;
+ eabis2[2] *= kFactor;
+
+ // Saturate the angles to the correct range
+ if (positiveRangeAlpha && (eabis2[0] < 0))
+ eabis2[0] += Scalar(2 * EIGEN_PI);
+ if (positiveRangeBeta && (eabis2[1] < 0))
+ eabis2[1] += Scalar(2 * EIGEN_PI);
+ if (positiveRangeGamma && (eabis2[2] < 0))
+ eabis2[2] += Scalar(2 * EIGEN_PI);
+
+ VERIFY_IS_APPROX(eabis, eabis2);// Verify that our estimation is the same as m.eulerAngles() is
+
+ Matrix3 mbis(AngleAxisType(eabis[0], I) * AngleAxisType(eabis[1], J) * AngleAxisType(eabis[2], K));
+ VERIFY_IS_APPROX(m, mbis);
+
+ // Tests that are only relevant for no possitive range
+ if (!(positiveRangeAlpha || positiveRangeBeta || positiveRangeGamma))
+ {
+ /* If I==K, and ea[1]==0, then there no unique solution. */
+ /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
+ if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
+ VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
+
+ // approx_or_less_than does not work for 0
+ VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
+ }
+
+ // Quaternions
+ QuaternionType q(e);
+ eabis = EulerAnglesType(q, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
+ VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
+}
+
+template<typename EulerSystem, typename Scalar>
+void verify_euler(const Matrix<Scalar,3,1>& ea)
+{
+ verify_euler_ranged<EulerSystem>(ea, false, false, false);
+ verify_euler_ranged<EulerSystem>(ea, false, false, true);
+ verify_euler_ranged<EulerSystem>(ea, false, true, false);
+ verify_euler_ranged<EulerSystem>(ea, false, true, true);
+ verify_euler_ranged<EulerSystem>(ea, true, false, false);
+ verify_euler_ranged<EulerSystem>(ea, true, false, true);
+ verify_euler_ranged<EulerSystem>(ea, true, true, false);
+ verify_euler_ranged<EulerSystem>(ea, true, true, true);
+}
+
+template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
+{
+ verify_euler<EulerSystemXYZ>(ea);
+ verify_euler<EulerSystemXYX>(ea);
+ verify_euler<EulerSystemXZY>(ea);
+ verify_euler<EulerSystemXZX>(ea);
+
+ verify_euler<EulerSystemYZX>(ea);
+ verify_euler<EulerSystemYZY>(ea);
+ verify_euler<EulerSystemYXZ>(ea);
+ verify_euler<EulerSystemYXY>(ea);
+
+ verify_euler<EulerSystemZXY>(ea);
+ verify_euler<EulerSystemZXZ>(ea);
+ verify_euler<EulerSystemZYX>(ea);
+ verify_euler<EulerSystemZYZ>(ea);
+}
+
+template<typename Scalar> void eulerangles()
+{
+ typedef Matrix<Scalar,3,3> Matrix3;
+ typedef Matrix<Scalar,3,1> Vector3;
+ typedef Array<Scalar,3,1> Array3;
+ typedef Quaternion<Scalar> Quaternionx;
+ typedef AngleAxis<Scalar> AngleAxisType;
+
+ Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
+ Quaternionx q1;
+ q1 = AngleAxisType(a, Vector3::Random().normalized());
+ Matrix3 m;
+ m = q1;
+
+ Vector3 ea = m.eulerAngles(0,1,2);
+ check_all_var(ea);
+ ea = m.eulerAngles(0,1,0);
+ check_all_var(ea);
+
+ // Check with purely random Quaternion:
+ q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
+ m = q1;
+ ea = m.eulerAngles(0,1,2);
+ check_all_var(ea);
+ ea = m.eulerAngles(0,1,0);
+ check_all_var(ea);
+
+ // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
+ ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
+ check_all_var(ea);
+
+ ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
+ check_all_var(ea);
+
+ ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
+ check_all_var(ea);
+
+ ea[1] = 0;
+ check_all_var(ea);
+
+ ea.head(2).setZero();
+ check_all_var(ea);
+
+ ea.setZero();
+ check_all_var(ea);
+}
+
+void test_EulerAngles()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( eulerangles<float>() );
+ CALL_SUBTEST_2( eulerangles<double>() );
+ }
+}