aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen')
-rw-r--r--unsupported/Eigen/CMakeLists.txt2
-rw-r--r--unsupported/Eigen/LevenbergMarquardt46
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt6
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt52
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h85
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h179
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/LMpar.h160
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h189
-rw-r--r--unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h344
9 files changed, 1062 insertions, 1 deletions
diff --git a/unsupported/Eigen/CMakeLists.txt b/unsupported/Eigen/CMakeLists.txt
index e961e72c5..e06f1238b 100644
--- a/unsupported/Eigen/CMakeLists.txt
+++ b/unsupported/Eigen/CMakeLists.txt
@@ -1,6 +1,6 @@
set(Eigen_HEADERS AdolcForward BVH IterativeSolvers MatrixFunctions MoreVectorization AutoDiff AlignedVector3 Polynomials
FFT NonLinearOptimization SparseExtra IterativeSolvers
- NumericalDiff Skyline MPRealSupport OpenGLSupport KroneckerProduct Splines
+ NumericalDiff Skyline MPRealSupport OpenGLSupport KroneckerProduct Splines LevenbergMarquardt
)
install(FILES
diff --git a/unsupported/Eigen/LevenbergMarquardt b/unsupported/Eigen/LevenbergMarquardt
new file mode 100644
index 000000000..5ce1a23f6
--- /dev/null
+++ b/unsupported/Eigen/LevenbergMarquardt
@@ -0,0 +1,46 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_LEVENBERGMARQUARDT_MODULE
+#define EIGEN_LEVENBERGMARQUARDT_MODULE
+
+// #include <vector>
+
+#include <Eigen/Core>
+#include <Eigen/Jacobi>
+#include <Eigen/QR>
+#include <unsupported/Eigen/NumericalDiff>
+#ifdef EIGEN_SPQR_SUPPORT
+#include <Eigen/SPQRSupport>
+#endif
+
+/** \ingroup NonLinearOptimization_modules
+ * \defgroup LevenbergMarquardt_Module Levenberg-Marquardt optimization module
+ *
+ * \code
+ * #include </Eigen/LevenbergMarquardt>
+ * \endcode
+ *
+ *
+ */
+
+#include "Eigen/SparseCore"
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+#include "src/LevenbergMarquardt/LMqrsolv.h"
+#include "src/LevenbergMarquardt/LMcovar.h"
+#include "src/LevenbergMarquardt/LMpar.h"
+
+#endif
+
+#include "src/LevenbergMarquardt/LevenbergMarquardt.h"
+#include "src/LevenbergMarquardt/LMonestep.h"
+
+
+#endif // EIGEN_LEVENBERGMARQUARDT_MODULE
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt b/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt
new file mode 100644
index 000000000..8513803ce
--- /dev/null
+++ b/unsupported/Eigen/src/LevenbergMarquardt/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_LevenbergMarquardt_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_LevenbergMarquardt_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/LevenbergMarquardt COMPONENT Devel
+ )
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt b/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
new file mode 100644
index 000000000..ae7984dae
--- /dev/null
+++ b/unsupported/Eigen/src/LevenbergMarquardt/CopyrightMINPACK.txt
@@ -0,0 +1,52 @@
+Minpack Copyright Notice (1999) University of Chicago. All rights reserved
+
+Redistribution and use in source and binary forms, with or
+without modification, are permitted provided that the
+following conditions are met:
+
+1. Redistributions of source code must retain the above
+copyright notice, this list of conditions and the following
+disclaimer.
+
+2. Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following
+disclaimer in the documentation and/or other materials
+provided with the distribution.
+
+3. The end-user documentation included with the
+redistribution, if any, must include the following
+acknowledgment:
+
+ "This product includes software developed by the
+ University of Chicago, as Operator of Argonne National
+ Laboratory.
+
+Alternately, this acknowledgment may appear in the software
+itself, if and wherever such third-party acknowledgments
+normally appear.
+
+4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
+WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
+UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
+THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
+OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
+OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
+OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
+USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
+THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
+DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
+UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
+BE CORRECTED.
+
+5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
+HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
+ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
+INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
+ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
+PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
+SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
+(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
+EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
+POSSIBILITY OF SUCH LOSS OR DAMAGES.
+
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h b/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
new file mode 100644
index 000000000..3210587e4
--- /dev/null
+++ b/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h
@@ -0,0 +1,85 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// This code initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+
+#ifndef EIGEN_LMCOVAR_H
+#define EIGEN_LMCOVAR_H
+
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar>
+void covar(
+ Matrix< Scalar, Dynamic, Dynamic > &r,
+ const VectorXi& ipvt,
+ Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
+{
+ using std::abs;
+ typedef DenseIndex Index;
+ /* Local variables */
+ Index i, j, k, l, ii, jj;
+ bool sing;
+ Scalar temp;
+
+ /* Function Body */
+ const Index n = r.cols();
+ const Scalar tolr = tol * abs(r(0,0));
+ Matrix< Scalar, Dynamic, 1 > wa(n);
+ assert(ipvt.size()==n);
+
+ /* form the inverse of r in the full upper triangle of r. */
+ l = -1;
+ for (k = 0; k < n; ++k)
+ if (abs(r(k,k)) > tolr) {
+ r(k,k) = 1. / r(k,k);
+ for (j = 0; j <= k-1; ++j) {
+ temp = r(k,k) * r(j,k);
+ r(j,k) = 0.;
+ r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
+ }
+ l = k;
+ }
+
+ /* form the full upper triangle of the inverse of (r transpose)*r */
+ /* in the full upper triangle of r. */
+ for (k = 0; k <= l; ++k) {
+ for (j = 0; j <= k-1; ++j)
+ r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
+ r.col(k).head(k+1) *= r(k,k);
+ }
+
+ /* form the full lower triangle of the covariance matrix */
+ /* in the strict lower triangle of r and in wa. */
+ for (j = 0; j < n; ++j) {
+ jj = ipvt[j];
+ sing = j > l;
+ for (i = 0; i <= j; ++i) {
+ if (sing)
+ r(i,j) = 0.;
+ ii = ipvt[i];
+ if (ii > jj)
+ r(ii,jj) = r(i,j);
+ if (ii < jj)
+ r(jj,ii) = r(i,j);
+ }
+ wa[jj] = r(j,j);
+ }
+
+ /* symmetrize the covariance matrix in r. */
+ r.topLeftCorner(n,n).template triangularView<StrictlyUpper>() = r.topLeftCorner(n,n).transpose();
+ r.diagonal() = wa;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_LMCOVAR_H
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h b/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
new file mode 100644
index 000000000..aa0c02668
--- /dev/null
+++ b/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h
@@ -0,0 +1,179 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+//
+// This code initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+
+#ifndef EIGEN_LMONESTEP_H
+#define EIGEN_LMONESTEP_H
+
+namespace Eigen {
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::minimizeOneStep(FVectorType &x)
+{
+ typedef typename FunctorType::JacobianType JacobianType;
+ using std::abs;
+ using std::sqrt;
+ RealScalar temp, temp1,temp2;
+ RealScalar ratio;
+ RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered;
+ assert(x.size()==n); // check the caller is not cheating us
+
+ temp = 0.0; xnorm = 0.0;
+ /* calculate the jacobian matrix. */
+ Index df_ret = m_functor.df(x, m_fjac);
+ if (df_ret<0)
+ return LevenbergMarquardtSpace::UserAsked;
+ if (df_ret>0)
+ // numerical diff, we evaluated the function df_ret times
+ m_nfev += df_ret;
+ else m_njev++;
+
+ /* compute the qr factorization of the jacobian. */
+ for (int j = 0; j < x.size(); ++j)
+ m_wa2(j) = m_fjac.col(j).norm();
+ //FIXME Implement bluenorm for sparse vectors
+// m_wa2 = m_fjac.colwise().blueNorm();
+ QRSolver qrfac(m_fjac); //FIXME Check if the QR decomposition succeed
+ // Make a copy of the first factor with the associated permutation
+ JacobianType rfactor;
+ rfactor = qrfac.matrixQR();
+ m_permutation = (qrfac.colsPermutation());
+
+ /* on the first iteration and if external scaling is not used, scale according */
+ /* to the norms of the columns of the initial jacobian. */
+ if (m_iter == 1) {
+ if (!m_useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ m_diag[j] = (m_wa2[j]==0.)? 1. : m_wa2[j];
+
+ /* on the first iteration, calculate the norm of the scaled x */
+ /* and initialize the step bound m_delta. */
+ xnorm = m_diag.cwiseProduct(x).stableNorm();
+ m_delta = m_factor * xnorm;
+ if (m_delta == 0.)
+ m_delta = m_factor;
+ }
+
+ /* form (q transpose)*m_fvec and store the first n components in */
+ /* m_qtf. */
+ m_wa4 = m_fvec;
+ m_wa4 = qrfac.matrixQ().adjoint() * m_fvec;
+ m_qtf = m_wa4.head(n);
+
+ /* compute the norm of the scaled gradient. */
+ m_gnorm = 0.;
+ if (m_fnorm != 0.)
+ for (Index j = 0; j < n; ++j)
+ if (m_wa2[m_permutation.indices()[j]] != 0.)
+ m_gnorm = (std::max)(m_gnorm, abs( rfactor.col(j).head(j+1).dot(m_qtf.head(j+1)/m_fnorm) / m_wa2[m_permutation.indices()[j]]));
+
+ /* test for convergence of the gradient norm. */
+ if (m_gnorm <= m_gtol)
+ return LevenbergMarquardtSpace::CosinusTooSmall;
+
+ /* rescale if necessary. */
+ if (!m_useExternalScaling)
+ m_diag = m_diag.cwiseMax(m_wa2);
+
+ do {
+ /* determine the levenberg-marquardt parameter. */
+ internal::lmpar2(qrfac, m_diag, m_qtf, m_delta, m_par, m_wa1);
+
+ /* store the direction p and x + p. calculate the norm of p. */
+ m_wa1 = -m_wa1;
+ m_wa2 = x + m_wa1;
+ pnorm = m_diag.cwiseProduct(m_wa1).stableNorm();
+
+ /* on the first iteration, adjust the initial step bound. */
+ if (m_iter == 1)
+ m_delta = (std::min)(m_delta,pnorm);
+
+ /* evaluate the function at x + p and calculate its norm. */
+ if ( m_functor(m_wa2, m_wa4) < 0)
+ return LevenbergMarquardtSpace::UserAsked;
+ ++m_nfev;
+ fnorm1 = m_wa4.stableNorm();
+
+ /* compute the scaled actual reduction. */
+ actred = -1.;
+ if (Scalar(.1) * fnorm1 < m_fnorm)
+ actred = 1. - internal::abs2(fnorm1 / m_fnorm);
+
+ /* compute the scaled predicted reduction and */
+ /* the scaled directional derivative. */
+ m_wa3 = rfactor.template triangularView<Upper>() * (m_permutation.inverse() *m_wa1);
+ temp1 = internal::abs2(m_wa3.stableNorm() / m_fnorm);
+ temp2 = internal::abs2(sqrt(m_par) * pnorm / m_fnorm);
+ prered = temp1 + temp2 / Scalar(.5);
+ dirder = -(temp1 + temp2);
+
+ /* compute the ratio of the actual to the predicted */
+ /* reduction. */
+ ratio = 0.;
+ if (prered != 0.)
+ ratio = actred / prered;
+
+ /* update the step bound. */
+ if (ratio <= Scalar(.25)) {
+ if (actred >= 0.)
+ temp = RealScalar(.5);
+ if (actred < 0.)
+ temp = RealScalar(.5) * dirder / (dirder + RealScalar(.5) * actred);
+ if (RealScalar(.1) * fnorm1 >= m_fnorm || temp < RealScalar(.1))
+ temp = Scalar(.1);
+ /* Computing MIN */
+ m_delta = temp * (std::min)(m_delta, pnorm / RealScalar(.1));
+ m_par /= temp;
+ } else if (!(m_par != 0. && ratio < RealScalar(.75))) {
+ m_delta = pnorm / RealScalar(.5);
+ m_par = RealScalar(.5) * m_par;
+ }
+
+ /* test for successful iteration. */
+ if (ratio >= RealScalar(1e-4)) {
+ /* successful iteration. update x, m_fvec, and their norms. */
+ x = m_wa2;
+ m_wa2 = m_diag.cwiseProduct(x);
+ m_fvec = m_wa4;
+ xnorm = m_wa2.stableNorm();
+ m_fnorm = fnorm1;
+ ++m_iter;
+ }
+
+ /* tests for convergence. */
+ if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm)
+ return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
+ if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1.)
+ return LevenbergMarquardtSpace::RelativeReductionTooSmall;
+ if (m_delta <= m_xtol * xnorm)
+ return LevenbergMarquardtSpace::RelativeErrorTooSmall;
+
+ /* tests for termination and stringent tolerances. */
+ if (m_nfev >= m_maxfev)
+ return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
+ if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
+ return LevenbergMarquardtSpace::FtolTooSmall;
+ if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
+ return LevenbergMarquardtSpace::XtolTooSmall;
+ if (m_gnorm <= NumTraits<Scalar>::epsilon())
+ return LevenbergMarquardtSpace::GtolTooSmall;
+
+ } while (ratio < Scalar(1e-4));
+
+ return LevenbergMarquardtSpace::Running;
+}
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_LMONESTEP_H \ No newline at end of file
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h b/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
new file mode 100644
index 000000000..dc60ca05a
--- /dev/null
+++ b/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h
@@ -0,0 +1,160 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// This code initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+
+#ifndef EIGEN_LMPAR_H
+#define EIGEN_LMPAR_H
+
+namespace Eigen {
+
+namespace internal {
+
+ template <typename QRSolver, typename VectorType>
+ void lmpar2(
+ const QRSolver &qr,
+ const VectorType &diag,
+ const VectorType &qtb,
+ typename VectorType::Scalar m_delta,
+ typename VectorType::Scalar &par,
+ VectorType &x)
+
+ {
+ using std::sqrt;
+ using std::abs;
+ typedef typename QRSolver::MatrixType MatrixType;
+ typedef typename QRSolver::Scalar Scalar;
+ typedef typename QRSolver::Index Index;
+
+ /* Local variables */
+ Index j;
+ Scalar fp;
+ Scalar parc, parl;
+ Index iter;
+ Scalar temp, paru;
+ Scalar gnorm;
+ Scalar dxnorm;
+
+
+ /* Function Body */
+ const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
+ const Index n = qr.matrixQR().cols();
+ assert(n==diag.size());
+ assert(n==qtb.size());
+
+ VectorType wa1, wa2;
+
+ /* compute and store in x the gauss-newton direction. if the */
+ /* jacobian is rank-deficient, obtain a least squares solution. */
+
+ // const Index rank = qr.nonzeroPivots(); // exactly double(0.)
+ const Index rank = qr.rank(); // use a threshold
+ wa1 = qtb;
+ wa1.tail(n-rank).setZero();
+ //FIXME There is no solve in place for sparse triangularView
+ //qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
+ wa1.head(rank) = qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(qtb.head(rank));
+
+ x = qr.colsPermutation()*wa1;
+
+ /* initialize the iteration counter. */
+ /* evaluate the function at the origin, and test */
+ /* for acceptance of the gauss-newton direction. */
+ iter = 0;
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ fp = dxnorm - m_delta;
+ if (fp <= Scalar(0.1) * m_delta) {
+ par = 0;
+ return;
+ }
+
+ /* if the jacobian is not rank deficient, the newton */
+ /* step provides a lower bound, parl, for the zero of */
+ /* the function. otherwise set this bound to zero. */
+ parl = 0.;
+ if (rank==n) {
+ wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
+ qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
+ temp = wa1.blueNorm();
+ parl = fp / m_delta / temp / temp;
+ }
+
+ /* calculate an upper bound, paru, for the zero of the function. */
+ for (j = 0; j < n; ++j)
+ wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
+
+ gnorm = wa1.stableNorm();
+ paru = gnorm / m_delta;
+ if (paru == 0.)
+ paru = dwarf / (std::min)(m_delta,Scalar(0.1));
+
+ /* if the input par lies outside of the interval (parl,paru), */
+ /* set par to the closer endpoint. */
+ par = (std::max)(par,parl);
+ par = (std::min)(par,paru);
+ if (par == 0.)
+ par = gnorm / dxnorm;
+
+ /* beginning of an iteration. */
+ MatrixType s;
+ s = qr.matrixQR();
+ while (true) {
+ ++iter;
+
+ /* evaluate the function at the current value of par. */
+ if (par == 0.)
+ par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
+ wa1 = sqrt(par)* diag;
+
+ VectorType sdiag(n);
+ lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag);
+
+ wa2 = diag.cwiseProduct(x);
+ dxnorm = wa2.blueNorm();
+ temp = fp;
+ fp = dxnorm - m_delta;
+
+ /* if the function is small enough, accept the current value */
+ /* of par. also test for the exceptional cases where parl */
+ /* is zero or the number of iterations has reached 10. */
+ if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
+ break;
+
+ /* compute the newton correction. */
+ wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
+ // we could almost use this here, but the diagonal is outside qr, in sdiag[]
+ // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
+ for (j = 0; j < n; ++j) {
+ wa1[j] /= sdiag[j];
+ temp = wa1[j];
+ for (Index i = j+1; i < n; ++i)
+ wa1[i] -= s.coeff(i,j) * temp;
+ }
+ temp = wa1.blueNorm();
+ parc = fp / m_delta / temp / temp;
+
+ /* depending on the sign of the function, update parl or paru. */
+ if (fp > 0.)
+ parl = (std::max)(parl,par);
+ if (fp < 0.)
+ paru = (std::min)(paru,par);
+
+ /* compute an improved estimate for par. */
+ par = (std::max)(parl,par+parc);
+ }
+ if (iter == 0)
+ par = 0.;
+ return;
+ }
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_LMPAR_H
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h b/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
new file mode 100644
index 000000000..ed6f97fe8
--- /dev/null
+++ b/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h
@@ -0,0 +1,189 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
+//
+// This code initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+
+#ifndef EIGEN_LMQRSOLV_H
+#define EIGEN_LMQRSOLV_H
+
+namespace Eigen {
+
+namespace internal {
+
+template <typename Scalar,int SizeAtCompileTime, typename Index>
+void lmqrsolv(
+ Matrix<Scalar,SizeAtCompileTime,SizeAtCompileTime> &s,
+ const PermutationMatrix<Dynamic,Dynamic,Index> &iPerm,
+ const Matrix<Scalar,Dynamic,1> &diag,
+ const Matrix<Scalar,Dynamic,1> &qtb,
+ Matrix<Scalar,Dynamic,1> &x,
+ Matrix<Scalar,Dynamic,1> &sdiag)
+{
+
+ /* Local variables */
+ Index i, j, k, l;
+ Scalar temp;
+ Index n = s.cols();
+ Matrix<Scalar,Dynamic,1> wa(n);
+ JacobiRotation<Scalar> givens;
+
+ /* Function Body */
+ // the following will only change the lower triangular part of s, including
+ // the diagonal, though the diagonal is restored afterward
+
+ /* copy r and (q transpose)*b to preserve input and initialize s. */
+ /* in particular, save the diagonal elements of r in x. */
+ x = s.diagonal();
+ wa = qtb;
+
+
+ s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
+ /* eliminate the diagonal matrix d using a givens rotation. */
+ for (j = 0; j < n; ++j) {
+
+ /* prepare the row of d to be eliminated, locating the */
+ /* diagonal element using p from the qr factorization. */
+ l = iPerm.indices()(j);
+ if (diag[l] == 0.)
+ break;
+ sdiag.tail(n-j).setZero();
+ sdiag[j] = diag[l];
+
+ /* the transformations to eliminate the row of d */
+ /* modify only a single element of (q transpose)*b */
+ /* beyond the first n, which is initially zero. */
+ Scalar qtbpj = 0.;
+ for (k = j; k < n; ++k) {
+ /* determine a givens rotation which eliminates the */
+ /* appropriate element in the current row of d. */
+ givens.makeGivens(-s(k,k), sdiag[k]);
+
+ /* compute the modified diagonal element of r and */
+ /* the modified element of ((q transpose)*b,0). */
+ s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
+ temp = givens.c() * wa[k] + givens.s() * qtbpj;
+ qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
+ wa[k] = temp;
+
+ /* accumulate the tranformation in the row of s. */
+ for (i = k+1; i<n; ++i) {
+ temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
+ sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
+ s(i,k) = temp;
+ }
+ }
+ }
+
+ /* solve the triangular system for z. if the system is */
+ /* singular, then obtain a least squares solution. */
+ Index nsing;
+ for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
+
+ wa.tail(n-nsing).setZero();
+ s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
+
+ // restore
+ sdiag = s.diagonal();
+ s.diagonal() = x;
+
+ /* permute the components of z back to components of x. */
+ x = iPerm * wa;
+}
+
+template <typename Scalar, int _Options, typename Index>
+void lmqrsolv(
+ SparseMatrix<Scalar,_Options,Index> &s,
+ const PermutationMatrix<Dynamic,Dynamic> &iPerm,
+ const Matrix<Scalar,Dynamic,1> &diag,
+ const Matrix<Scalar,Dynamic,1> &qtb,
+ Matrix<Scalar,Dynamic,1> &x,
+ Matrix<Scalar,Dynamic,1> &sdiag)
+{
+ /* Local variables */
+ typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
+ Index i, j, k, l;
+ Scalar temp;
+ Index n = s.cols();
+ Matrix<Scalar,Dynamic,1> wa(n);
+ JacobiRotation<Scalar> givens;
+
+ /* Function Body */
+ // the following will only change the lower triangular part of s, including
+ // the diagonal, though the diagonal is restored afterward
+
+ /* copy r and (q transpose)*b to preserve input and initialize R. */
+ wa = qtb;
+ FactorType R(s);
+ // Eliminate the diagonal matrix d using a givens rotation
+ for (j = 0; j < n; ++j)
+ {
+ // Prepare the row of d to be eliminated, locating the
+ // diagonal element using p from the qr factorization
+ l = iPerm.indices()(j);
+ if (diag(l) == Scalar(0))
+ break;
+ sdiag.tail(n-j).setZero();
+ sdiag[j] = diag[l];
+ // the transformations to eliminate the row of d
+ // modify only a single element of (q transpose)*b
+ // beyond the first n, which is initially zero.
+
+ Scalar qtbpj = 0;
+ // Browse the nonzero elements of row j of the upper triangular s
+ for (k = j; k < n; ++k)
+ {
+ typename FactorType::InnerIterator itk(R,k);
+ for (; itk; ++itk){
+ if (itk.index() < k) continue;
+ else break;
+ }
+ //At this point, we have the diagonal element R(k,k)
+ // Determine a givens rotation which eliminates
+ // the appropriate element in the current row of d
+ givens.makeGivens(-itk.value(), sdiag(k));
+
+ // Compute the modified diagonal element of r and
+ // the modified element of ((q transpose)*b,0).
+ itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
+ temp = givens.c() * wa(k) + givens.s() * qtbpj;
+ qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
+ wa(k) = temp;
+
+ // Accumulate the transformation in the remaining k row/column of R
+ for (++itk; itk; ++itk)
+ {
+ i = itk.index();
+ temp = givens.c() * itk.value() + givens.s() * sdiag(i);
+ sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
+ itk.valueRef() = temp;
+ }
+ }
+ }
+
+ // Solve the triangular system for z. If the system is
+ // singular, then obtain a least squares solution
+ Index nsing;
+ for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
+
+ wa.tail(n-nsing).setZero();
+// x = wa;
+ wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
+
+ sdiag = R.diagonal();
+ // Permute the components of z back to components of x
+ x = iPerm * wa;
+}
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_LMQRSOLV_H
diff --git a/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h b/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
new file mode 100644
index 000000000..e45e73ab5
--- /dev/null
+++ b/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h
@@ -0,0 +1,344 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
+// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
+//
+// The algorithm of this class initially comes from MINPACK whose original authors are:
+// Copyright Jorge More - Argonne National Laboratory
+// Copyright Burt Garbow - Argonne National Laboratory
+// Copyright Ken Hillstrom - Argonne National Laboratory
+//
+// This Source Code Form is subject to the terms of the Minpack license
+// (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_LEVENBERGMARQUARDT_H
+#define EIGEN_LEVENBERGMARQUARDT_H
+
+
+namespace Eigen {
+namespace LevenbergMarquardtSpace {
+ enum Status {
+ NotStarted = -2,
+ Running = -1,
+ ImproperInputParameters = 0,
+ RelativeReductionTooSmall = 1,
+ RelativeErrorTooSmall = 2,
+ RelativeErrorAndReductionTooSmall = 3,
+ CosinusTooSmall = 4,
+ TooManyFunctionEvaluation = 5,
+ FtolTooSmall = 6,
+ XtolTooSmall = 7,
+ GtolTooSmall = 8,
+ UserAsked = 9
+ };
+}
+
+template <typename _Scalar, int NX=Dynamic, int NY=Dynamic>
+struct DenseFunctor
+{
+ typedef _Scalar Scalar;
+ enum {
+ InputsAtCompileTime = NX,
+ ValuesAtCompileTime = NY
+ };
+ typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
+ typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
+ typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
+ typedef ColPivHouseholderQR<JacobianType> QRSolver;
+ const int m_inputs, m_values;
+
+ DenseFunctor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
+ DenseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
+
+ int inputs() const { return m_inputs; }
+ int values() const { return m_values; }
+
+ //int operator()(const InputType &x, ValueType& fvec) { }
+ // should be defined in derived classes
+
+ //int df(const InputType &x, JacobianType& fjac) { }
+ // should be defined in derived classes
+};
+
+#ifdef EIGEN_SPQR_SUPPORT
+template <typename _Scalar, typename _Index>
+struct SparseFunctor
+{
+ typedef _Scalar Scalar;
+ typedef _Index Index;
+ typedef Matrix<Scalar,Dynamic,1> InputType;
+ typedef Matrix<Scalar,Dynamic,1> ValueType;
+ typedef SparseMatrix<Scalar, ColMajor, Index> JacobianType;
+ typedef SPQR<JacobianType> QRSolver;
+
+ SparseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {}
+
+ int inputs() const { return m_inputs; }
+ int values() const { return m_values; }
+
+ const int m_inputs, m_values;
+ //int operator()(const InputType &x, ValueType& fvec) { }
+ // to be defined in the functor
+
+ //int df(const InputType &x, JacobianType& fjac) { }
+ // to be defined in the functor if no automatic differentiation
+
+};
+#endif
+namespace internal {
+template <typename QRSolver, typename VectorType>
+void lmpar2(const QRSolver &qr, const VectorType &diag, const VectorType &qtb,
+ typename VectorType::Scalar m_delta, typename VectorType::Scalar &par,
+ VectorType &x);
+ }
+/**
+ * \ingroup NonLinearOptimization_Module
+ * \brief Performs non linear optimization over a non-linear function,
+ * using a variant of the Levenberg Marquardt algorithm.
+ *
+ * Check wikipedia for more information.
+ * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
+ */
+template<typename _FunctorType>
+class LevenbergMarquardt
+{
+ public:
+ typedef _FunctorType FunctorType;
+ typedef typename FunctorType::QRSolver QRSolver;
+ typedef typename FunctorType::JacobianType JacobianType;
+ typedef typename JacobianType::Scalar Scalar;
+ typedef typename JacobianType::RealScalar RealScalar;
+ typedef typename JacobianType::Index Index;
+ typedef typename QRSolver::Index PermIndex;
+ typedef Matrix<Scalar,Dynamic,1> FVectorType;
+ typedef PermutationMatrix<Dynamic,Dynamic> PermutationType;
+ public:
+ LevenbergMarquardt(FunctorType& functor)
+ : m_functor(functor),m_nfev(0),m_njev(0),m_fnorm(0.0),m_gnorm(0)
+ {
+ resetParameters();
+ m_useExternalScaling=false;
+ }
+
+ LevenbergMarquardtSpace::Status minimize(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
+ LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);
+ LevenbergMarquardtSpace::Status lmder1(
+ FVectorType &x,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+ static LevenbergMarquardtSpace::Status lmdif1(
+ FunctorType &functor,
+ FVectorType &x,
+ Index *nfev,
+ const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
+ );
+
+ /** Sets the default parameters */
+ void resetParameters()
+ {
+ m_factor = 100.;
+ m_maxfev = 400;
+ m_ftol = std::sqrt(NumTraits<RealScalar>::epsilon());
+ m_xtol = std::sqrt(NumTraits<RealScalar>::epsilon());
+ m_gtol = 0. ;
+ m_epsfcn = 0. ;
+ }
+
+ /** Sets the tolerance for the norm of the solution vector*/
+ void setXtol(RealScalar xtol) { m_xtol = xtol; }
+
+ /** Sets the tolerance for the norm of the vector function*/
+ void setFtol(RealScalar ftol) { m_ftol = ftol; }
+
+ /** Sets the tolerance for the norm of the gradient of the error vector*/
+ void setGtol(RealScalar gtol) { m_gtol = gtol; }
+
+ /** Sets the step bound for the diagonal shift */
+ void setFactor(RealScalar factor) { m_factor = factor; }
+
+ /** Sets the error precision */
+ void setEpsilon (RealScalar epsfcn) { m_epsfcn = epsfcn; }
+
+ /** Sets the maximum number of function evaluation */
+ void setMaxfev(Index maxfev) {m_maxfev = maxfev; }
+
+ /** Use an external Scaling. If set to true, pass a nonzero diagonal to diag() */
+ void setExternalScaling(bool value) {m_useExternalScaling = value; }
+
+ /** Get a reference to the diagonal of the jacobian */
+ FVectorType& diag() {return m_diag; }
+
+ /** Number of iterations performed */
+ Index iterations() { return m_iter; }
+
+ /** Number of functions evaluation */
+ Index nfev() { return m_nfev; }
+
+ /** Number of jacobian evaluation */
+ Index njev() { return m_njev; }
+
+ /** Norm of current vector function */
+ RealScalar fnorm() {return m_fnorm; }
+
+ /** Norm of the gradient of the error */
+ RealScalar gnorm() {return m_gnorm; }
+
+ /** the LevenbergMarquardt parameter */
+ RealScalar lm_param(void) { return m_par; }
+
+ /** reference to the current vector function
+ */
+ FVectorType& fvec() {return m_fvec; }
+
+ /** reference to the matrix where the current Jacobian matrix is stored
+ */
+ JacobianType& fjac() {return m_fjac; }
+
+ /** the permutation used
+ */
+ PermutationType permutation() {return m_permutation; }
+
+ private:
+ JacobianType m_fjac;
+ FunctorType &m_functor;
+ FVectorType m_fvec, m_qtf, m_diag;
+ Index n;
+ Index m;
+ Index m_nfev;
+ Index m_njev;
+ RealScalar m_fnorm; // Norm of the current vector function
+ RealScalar m_gnorm; //Norm of the gradient of the error
+ RealScalar m_factor; //
+ Index m_maxfev; // Maximum number of function evaluation
+ RealScalar m_ftol; //Tolerance in the norm of the vector function
+ RealScalar m_xtol; //
+ RealScalar m_gtol; //tolerance of the norm of the error gradient
+ RealScalar m_epsfcn; //
+ Index m_iter; // Number of iterations performed
+ RealScalar m_delta;
+ bool m_useExternalScaling;
+ PermutationType m_permutation;
+ FVectorType m_wa1, m_wa2, m_wa3, m_wa4; //Temporary vectors
+ RealScalar m_par;
+};
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::minimize(FVectorType &x)
+{
+ LevenbergMarquardtSpace::Status status = minimizeInit(x);
+ if (status==LevenbergMarquardtSpace::ImproperInputParameters)
+ return status;
+ do {
+// std::cout << " uv " << x.transpose() << "\n";
+ status = minimizeOneStep(x);
+ } while (status==LevenbergMarquardtSpace::Running);
+ return status;
+}
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x)
+{
+ n = x.size();
+ m = m_functor.values();
+
+ m_wa1.resize(n); m_wa2.resize(n); m_wa3.resize(n);
+ m_wa4.resize(m);
+ m_fvec.resize(m);
+ //FIXME Sparse Case : Allocate space for the jacobian
+ m_fjac.resize(m, n);
+// m_fjac.reserve(VectorXi::Constant(n,5)); // FIXME Find a better alternative
+ if (!m_useExternalScaling)
+ m_diag.resize(n);
+ assert( (!m_useExternalScaling || m_diag.size()==n) || "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'");
+ m_qtf.resize(n);
+
+ /* Function Body */
+ m_nfev = 0;
+ m_njev = 0;
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || m_ftol < 0. || m_xtol < 0. || m_gtol < 0. || m_maxfev <= 0 || m_factor <= 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ if (m_useExternalScaling)
+ for (Index j = 0; j < n; ++j)
+ if (m_diag[j] <= 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ /* evaluate the function at the starting point */
+ /* and calculate its norm. */
+ m_nfev = 1;
+ if ( m_functor(x, m_fvec) < 0)
+ return LevenbergMarquardtSpace::UserAsked;
+ m_fnorm = m_fvec.stableNorm();
+
+ /* initialize levenberg-marquardt parameter and iteration counter. */
+ m_par = 0.;
+ m_iter = 1;
+
+ return LevenbergMarquardtSpace::NotStarted;
+}
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::lmder1(
+ FVectorType &x,
+ const Scalar tol
+ )
+{
+ n = x.size();
+ m = m_functor.values();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || tol < 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ resetParameters();
+ m_ftol = tol;
+ m_xtol = tol;
+ m_maxfev = 100*(n+1);
+
+ return minimize(x);
+}
+
+
+template<typename FunctorType>
+LevenbergMarquardtSpace::Status
+LevenbergMarquardt<FunctorType>::lmdif1(
+ FunctorType &functor,
+ FVectorType &x,
+ Index *nfev,
+ const Scalar tol
+ )
+{
+ Index n = x.size();
+ Index m = functor.values();
+
+ /* check the input parameters for errors. */
+ if (n <= 0 || m < n || tol < 0.)
+ return LevenbergMarquardtSpace::ImproperInputParameters;
+
+ NumericalDiff<FunctorType> numDiff(functor);
+ // embedded LevenbergMarquardt
+ LevenbergMarquardt<NumericalDiff<FunctorType> > lm(numDiff);
+ lm.setFtol(tol);
+ lm.setXtol(tol);
+ lm.setMaxfev(200*(n+1));
+
+ LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
+ if (nfev)
+ * nfev = lm.nfev();
+ return info;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_LEVENBERGMARQUARDT_H