aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/SVD/SVDBase.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/SVD/SVDBase.h')
-rw-r--r--unsupported/Eigen/src/SVD/SVDBase.h236
1 files changed, 0 insertions, 236 deletions
diff --git a/unsupported/Eigen/src/SVD/SVDBase.h b/unsupported/Eigen/src/SVD/SVDBase.h
deleted file mode 100644
index fd8af3b8c..000000000
--- a/unsupported/Eigen/src/SVD/SVDBase.h
+++ /dev/null
@@ -1,236 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
-// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
-// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
-// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_SVD_H
-#define EIGEN_SVD_H
-
-namespace Eigen {
-/** \ingroup SVD_Module
- *
- *
- * \class SVDBase
- *
- * \brief Mother class of SVD classes algorithms
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
- * \f[ A = U S V^* \f]
- * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
- * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
- * and right \em singular \em vectors of \a A respectively.
- *
- * Singular values are always sorted in decreasing order.
- *
- *
- * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
- * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
- * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
- * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
- *
- * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
- * terminate in finite (and reasonable) time.
- * \sa MatrixBase::genericSvd()
- */
-template<typename _MatrixType>
-class SVDBase
-{
-
-public:
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
- MatrixOptions = MatrixType::Options
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
- typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
- typedef typename internal::plain_row_type<MatrixType>::type RowType;
- typedef typename internal::plain_col_type<MatrixType>::type ColType;
- typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
- MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
- WorkMatrixType;
-
-
-
-
- /** \brief Method performing the decomposition of given matrix using custom options.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non-default) FullPivHouseholderQR preconditioner.
- */
- SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions);
-
- /** \brief Method performing the decomposition of given matrix using current options.
- *
- * \param matrix the matrix to decompose
- *
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
- */
- //virtual SVDBase& compute(const MatrixType& matrix) = 0;
- SVDBase& compute(const MatrixType& matrix);
-
- /** \returns the \a U matrix.
- *
- * For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
- * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
- *
- * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
- *
- * This method asserts that you asked for \a U to be computed.
- */
- const MatrixUType& matrixU() const
- {
- eigen_assert(m_isInitialized && "SVD is not initialized.");
- eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return m_matrixU;
- }
-
- /** \returns the \a V matrix.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
- * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
- *
- * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
- *
- * This method asserts that you asked for \a V to be computed.
- */
- const MatrixVType& matrixV() const
- {
- eigen_assert(m_isInitialized && "SVD is not initialized.");
- eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return m_matrixV;
- }
-
- /** \returns the vector of singular values.
- *
- * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
- * returned vector has size \a m. Singular values are always sorted in decreasing order.
- */
- const SingularValuesType& singularValues() const
- {
- eigen_assert(m_isInitialized && "SVD is not initialized.");
- return m_singularValues;
- }
-
-
-
- /** \returns the number of singular values that are not exactly 0 */
- Index nonzeroSingularValues() const
- {
- eigen_assert(m_isInitialized && "SVD is not initialized.");
- return m_nonzeroSingularValues;
- }
-
-
- /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
- inline bool computeU() const { return m_computeFullU || m_computeThinU; }
- /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
- inline bool computeV() const { return m_computeFullV || m_computeThinV; }
-
-
- inline Index rows() const { return m_rows; }
- inline Index cols() const { return m_cols; }
-
-
-protected:
- // return true if already allocated
- bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
-
- MatrixUType m_matrixU;
- MatrixVType m_matrixV;
- SingularValuesType m_singularValues;
- bool m_isInitialized, m_isAllocated;
- bool m_computeFullU, m_computeThinU;
- bool m_computeFullV, m_computeThinV;
- unsigned int m_computationOptions;
- Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
-
-
- /** \brief Default Constructor.
- *
- * Default constructor of SVDBase
- */
- SVDBase()
- : m_isInitialized(false),
- m_isAllocated(false),
- m_computationOptions(0),
- m_rows(-1), m_cols(-1)
- {}
-
-
-};
-
-
-template<typename MatrixType>
-bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
-{
- eigen_assert(rows >= 0 && cols >= 0);
-
- if (m_isAllocated &&
- rows == m_rows &&
- cols == m_cols &&
- computationOptions == m_computationOptions)
- {
- return true;
- }
-
- m_rows = rows;
- m_cols = cols;
- m_isInitialized = false;
- m_isAllocated = true;
- m_computationOptions = computationOptions;
- m_computeFullU = (computationOptions & ComputeFullU) != 0;
- m_computeThinU = (computationOptions & ComputeThinU) != 0;
- m_computeFullV = (computationOptions & ComputeFullV) != 0;
- m_computeThinV = (computationOptions & ComputeThinV) != 0;
- eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
- eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
- eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
- "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
-
- m_diagSize = (std::min)(m_rows, m_cols);
- m_singularValues.resize(m_diagSize);
- if(RowsAtCompileTime==Dynamic)
- m_matrixU.resize(m_rows, m_computeFullU ? m_rows
- : m_computeThinU ? m_diagSize
- : 0);
- if(ColsAtCompileTime==Dynamic)
- m_matrixV.resize(m_cols, m_computeFullV ? m_cols
- : m_computeThinV ? m_diagSize
- : 0);
-
- return false;
-}
-
-}// end namespace
-
-#endif // EIGEN_SVD_H