aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/BDCSVD/BDCSVD.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/BDCSVD/BDCSVD.h')
-rw-r--r--unsupported/Eigen/src/BDCSVD/BDCSVD.h949
1 files changed, 0 insertions, 949 deletions
diff --git a/unsupported/Eigen/src/BDCSVD/BDCSVD.h b/unsupported/Eigen/src/BDCSVD/BDCSVD.h
deleted file mode 100644
index a7c369633..000000000
--- a/unsupported/Eigen/src/BDCSVD/BDCSVD.h
+++ /dev/null
@@ -1,949 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
-// research report written by Ming Gu and Stanley C.Eisenstat
-// The code variable names correspond to the names they used in their
-// report
-//
-// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
-// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
-// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
-// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
-// Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
-//
-// Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_BDCSVD_H
-#define EIGEN_BDCSVD_H
-
-#define EPSILON 0.0000000000000001
-
-#define ALGOSWAP 16
-
-namespace Eigen {
-
-template<typename _MatrixType> class BDCSVD;
-
-namespace internal {
-
-template<typename _MatrixType>
-struct traits<BDCSVD<_MatrixType> >
-{
- typedef _MatrixType MatrixType;
-};
-
-} // end namespace internal
-
-
-/** \ingroup SVD_Module
- *
- *
- * \class BDCSVD
- *
- * \brief class Bidiagonal Divide and Conquer SVD
- *
- * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
- * We plan to have a very similar interface to JacobiSVD on this class.
- * It should be used to speed up the calcul of SVD for big matrices.
- */
-template<typename _MatrixType>
-class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
-{
- typedef SVDBase<BDCSVD> Base;
-
-public:
- using Base::rows;
- using Base::cols;
-
- typedef _MatrixType MatrixType;
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef typename MatrixType::Index Index;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
- MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
- MatrixOptions = MatrixType::Options
- };
-
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
- MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
- MatrixUType;
- typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
- MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
- MatrixVType;
- typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
- typedef typename internal::plain_row_type<MatrixType>::type RowType;
- typedef typename internal::plain_col_type<MatrixType>::type ColType;
- typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
- typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
- typedef Matrix<RealScalar, Dynamic, 1> VectorType;
- typedef Array<RealScalar, Dynamic, 1> ArrayXr;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via BDCSVD::compute(const MatrixType&).
- */
- BDCSVD() : algoswap(ALGOSWAP), m_numIters(0)
- {}
-
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem size.
- * \sa BDCSVD()
- */
- BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
- : algoswap(ALGOSWAP), m_numIters(0)
- {
- allocate(rows, cols, computationOptions);
- }
-
- /** \brief Constructor performing the decomposition of given matrix.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non - default) FullPivHouseholderQR preconditioner.
- */
- BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
- : algoswap(ALGOSWAP), m_numIters(0)
- {
- compute(matrix, computationOptions);
- }
-
- ~BDCSVD()
- {
- }
-
- /** \brief Method performing the decomposition of given matrix using custom options.
- *
- * \param matrix the matrix to decompose
- * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
- * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
- * #ComputeFullV, #ComputeThinV.
- *
- * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
- * available with the (non - default) FullPivHouseholderQR preconditioner.
- */
- BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
-
- /** \brief Method performing the decomposition of given matrix using current options.
- *
- * \param matrix the matrix to decompose
- *
- * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
- */
- BDCSVD& compute(const MatrixType& matrix)
- {
- return compute(matrix, this->m_computationOptions);
- }
-
- void setSwitchSize(int s)
- {
- eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
- algoswap = s;
- }
-
-
- /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
- *
- * \param b the right - hand - side of the equation to solve.
- *
- * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
- *
- * \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving.
- * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
- */
- template<typename Rhs>
- inline const internal::solve_retval<BDCSVD, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(this->m_isInitialized && "BDCSVD is not initialized.");
- eigen_assert(computeU() && computeV() &&
- "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
- return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived());
- }
-
-
- const MatrixUType& matrixU() const
- {
- eigen_assert(this->m_isInitialized && "SVD is not initialized.");
- if (isTranspose){
- eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return this->m_matrixV;
- }
- else
- {
- eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return this->m_matrixU;
- }
-
- }
-
-
- const MatrixVType& matrixV() const
- {
- eigen_assert(this->m_isInitialized && "SVD is not initialized.");
- if (isTranspose){
- eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return this->m_matrixU;
- }
- else
- {
- eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return this->m_matrixV;
- }
- }
-
- using Base::computeU;
- using Base::computeV;
-
-private:
- void allocate(Index rows, Index cols, unsigned int computationOptions);
- void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
- void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
- void computeSingVals(const ArrayXr& col0, const ArrayXr& diag, VectorType& singVals,
- ArrayXr& shifts, ArrayXr& mus);
- void perturbCol0(const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals,
- const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat);
- void computeSingVecs(const ArrayXr& zhat, const ArrayXr& diag, const VectorType& singVals,
- const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V);
- void deflation43(Index firstCol, Index shift, Index i, Index size);
- void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
- void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
- void copyUV(const typename internal::UpperBidiagonalization<MatrixX>::HouseholderUSequenceType& householderU,
- const typename internal::UpperBidiagonalization<MatrixX>::HouseholderVSequenceType& householderV);
-
-protected:
- MatrixXr m_naiveU, m_naiveV;
- MatrixXr m_computed;
- Index nRec;
- int algoswap;
- bool isTranspose, compU, compV;
-
-public:
- int m_numIters;
-}; //end class BDCSVD
-
-
-// Methode to allocate ans initialize matrix and attributs
-template<typename MatrixType>
-void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
-{
- isTranspose = (cols > rows);
- if (Base::allocate(rows, cols, computationOptions)) return;
- m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
- if (isTranspose){
- compU = this->computeU();
- compV = this->computeV();
- }
- else
- {
- compV = this->computeU();
- compU = this->computeV();
- }
- if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
- else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
-
- if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
-
-
- //should be changed for a cleaner implementation
- if (isTranspose){
- bool aux;
- if (this->computeU()||this->computeV()){
- aux = this->m_computeFullU;
- this->m_computeFullU = this->m_computeFullV;
- this->m_computeFullV = aux;
- aux = this->m_computeThinU;
- this->m_computeThinU = this->m_computeThinV;
- this->m_computeThinV = aux;
- }
- }
-}// end allocate
-
-// Methode which compute the BDCSVD for the int
-template<>
-BDCSVD<Matrix<int, Dynamic, Dynamic> >& BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
- allocate(matrix.rows(), matrix.cols(), computationOptions);
- this->m_nonzeroSingularValues = 0;
- m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
- for (int i=0; i<this->m_diagSize; i++) {
- this->m_singularValues.coeffRef(i) = 0;
- }
- if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
- if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols());
- this->m_isInitialized = true;
- return *this;
-}
-
-
-// Methode which compute the BDCSVD
-template<typename MatrixType>
-BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
-{
- allocate(matrix.rows(), matrix.cols(), computationOptions);
- using std::abs;
-
- //**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ;
- MatrixType copy;
- if (isTranspose) copy = matrix.adjoint();
- else copy = matrix;
-
- internal::UpperBidiagonalization<MatrixX> bid(copy);
-
- //**** step 2 Divide
- m_computed.topRows(this->m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
- m_computed.template bottomRows<1>().setZero();
- divide(0, this->m_diagSize - 1, 0, 0, 0);
-
- //**** step 3 copy
- for (int i=0; i<this->m_diagSize; i++) {
- RealScalar a = abs(m_computed.coeff(i, i));
- this->m_singularValues.coeffRef(i) = a;
- if (a == 0){
- this->m_nonzeroSingularValues = i;
- this->m_singularValues.tail(this->m_diagSize - i - 1).setZero();
- break;
- }
- else if (i == this->m_diagSize - 1)
- {
- this->m_nonzeroSingularValues = i + 1;
- break;
- }
- }
- copyUV(bid.householderU(), bid.householderV());
- this->m_isInitialized = true;
- return *this;
-}// end compute
-
-
-template<typename MatrixType>
-void BDCSVD<MatrixType>::copyUV(const typename internal::UpperBidiagonalization<MatrixX>::HouseholderUSequenceType& householderU,
- const typename internal::UpperBidiagonalization<MatrixX>::HouseholderVSequenceType& householderV)
-{
- // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
- if (this->computeU()){
- Index Ucols = this->m_computeThinU ? this->m_nonzeroSingularValues : householderU.cols();
- this->m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
- Index blockCols = this->m_computeThinU ? this->m_nonzeroSingularValues : this->m_diagSize;
- this->m_matrixU.block(0, 0, this->m_diagSize, blockCols) =
- m_naiveV.template cast<Scalar>().block(0, 0, this->m_diagSize, blockCols);
- this->m_matrixU = householderU * this->m_matrixU;
- }
- if (this->computeV()){
- Index Vcols = this->m_computeThinV ? this->m_nonzeroSingularValues : householderV.cols();
- this->m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
- Index blockCols = this->m_computeThinV ? this->m_nonzeroSingularValues : this->m_diagSize;
- this->m_matrixV.block(0, 0, this->m_diagSize, blockCols) =
- m_naiveU.template cast<Scalar>().block(0, 0, this->m_diagSize, blockCols);
- this->m_matrixV = householderV * this->m_matrixV;
- }
-}
-
-// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
-// place of the submatrix we are currently working on.
-
-//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
-//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
-// lastCol + 1 - firstCol is the size of the submatrix.
-//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
-//@param firstRowW : Same as firstRowW with the column.
-//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
-// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
-template<typename MatrixType>
-void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
- Index firstColW, Index shift)
-{
- // requires nbRows = nbCols + 1;
- using std::pow;
- using std::sqrt;
- using std::abs;
- const Index n = lastCol - firstCol + 1;
- const Index k = n/2;
- RealScalar alphaK;
- RealScalar betaK;
- RealScalar r0;
- RealScalar lambda, phi, c0, s0;
- MatrixXr l, f;
- // We use the other algorithm which is more efficient for small
- // matrices.
- if (n < algoswap){
- JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n),
- ComputeFullU | (ComputeFullV * compV)) ;
- if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
- else
- {
- m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
- m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
- }
- if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
- m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
- for (int i=0; i<n; i++)
- {
- m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
- }
- return;
- }
- // We use the divide and conquer algorithm
- alphaK = m_computed(firstCol + k, firstCol + k);
- betaK = m_computed(firstCol + k + 1, firstCol + k);
- // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
- // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
- // right submatrix before the left one.
- divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
- divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
- if (compU)
- {
- lambda = m_naiveU(firstCol + k, firstCol + k);
- phi = m_naiveU(firstCol + k + 1, lastCol + 1);
- }
- else
- {
- lambda = m_naiveU(1, firstCol + k);
- phi = m_naiveU(0, lastCol + 1);
- }
- r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
- + abs(betaK * phi) * abs(betaK * phi));
- if (compU)
- {
- l = m_naiveU.row(firstCol + k).segment(firstCol, k);
- f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
- }
- else
- {
- l = m_naiveU.row(1).segment(firstCol, k);
- f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
- }
- if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
- if (r0 == 0)
- {
- c0 = 1;
- s0 = 0;
- }
- else
- {
- c0 = alphaK * lambda / r0;
- s0 = betaK * phi / r0;
- }
- if (compU)
- {
- MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
- // we shiftW Q1 to the right
- for (Index i = firstCol + k - 1; i >= firstCol; i--)
- {
- m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
- }
- // we shift q1 at the left with a factor c0
- m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
- // last column = q1 * - s0
- m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
- // first column = q2 * s0
- m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) <<
- m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0;
- // q2 *= c0
- m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
- }
- else
- {
- RealScalar q1 = (m_naiveU(0, firstCol + k));
- // we shift Q1 to the right
- for (Index i = firstCol + k - 1; i >= firstCol; i--)
- {
- m_naiveU(0, i + 1) = m_naiveU(0, i);
- }
- // we shift q1 at the left with a factor c0
- m_naiveU(0, firstCol) = (q1 * c0);
- // last column = q1 * - s0
- m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
- // first column = q2 * s0
- m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
- // q2 *= c0
- m_naiveU(1, lastCol + 1) *= c0;
- m_naiveU.row(1).segment(firstCol + 1, k).setZero();
- m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
- }
- m_computed(firstCol + shift, firstCol + shift) = r0;
- m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
- m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();
-
-
- // Second part: try to deflate singular values in combined matrix
- deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
-
- // Third part: compute SVD of combined matrix
- MatrixXr UofSVD, VofSVD;
- VectorType singVals;
- computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
- if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= UofSVD;
- else m_naiveU.block(0, firstCol, 2, n + 1) *= UofSVD;
- if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= VofSVD;
- m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
- m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
-}// end divide
-
-// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
-// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
-// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
-// that if compV is false, then V is not computed. Singular values are sorted in decreasing order.
-//
-// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
-// handling of round-off errors, be consistent in ordering
-template <typename MatrixType>
-void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
-{
- // TODO Get rid of these copies (?)
- ArrayXr col0 = m_computed.block(firstCol, firstCol, n, 1);
- ArrayXr diag = m_computed.block(firstCol, firstCol, n, n).diagonal();
- diag(0) = 0;
-
- // compute singular values and vectors (in decreasing order)
- singVals.resize(n);
- U.resize(n+1, n+1);
- if (compV) V.resize(n, n);
-
- if (col0.hasNaN() || diag.hasNaN()) return;
-
- ArrayXr shifts(n), mus(n), zhat(n);
- computeSingVals(col0, diag, singVals, shifts, mus);
- perturbCol0(col0, diag, singVals, shifts, mus, zhat);
- computeSingVecs(zhat, diag, singVals, shifts, mus, U, V);
-
- // Reverse order so that singular values in increased order
- singVals.reverseInPlace();
- U.leftCols(n) = U.leftCols(n).rowwise().reverse().eval();
- if (compV) V = V.rowwise().reverse().eval();
-}
-
-template <typename MatrixType>
-void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& diag,
- VectorType& singVals, ArrayXr& shifts, ArrayXr& mus)
-{
- using std::abs;
- using std::swap;
-
- Index n = col0.size();
- for (Index k = 0; k < n; ++k) {
- if (col0(k) == 0) {
- // entry is deflated, so singular value is on diagonal
- singVals(k) = diag(k);
- mus(k) = 0;
- shifts(k) = diag(k);
- continue;
- }
-
- // otherwise, use secular equation to find singular value
- RealScalar left = diag(k);
- RealScalar right = (k != n-1) ? diag(k+1) : (diag(n-1) + col0.matrix().norm());
-
- // first decide whether it's closer to the left end or the right end
- RealScalar mid = left + (right-left) / 2;
- RealScalar fMid = 1 + (col0.square() / ((diag + mid) * (diag - mid))).sum();
-
- RealScalar shift;
- if (k == n-1 || fMid > 0) shift = left;
- else shift = right;
-
- // measure everything relative to shift
- ArrayXr diagShifted = diag - shift;
-
- // initial guess
- RealScalar muPrev, muCur;
- if (shift == left) {
- muPrev = (right - left) * 0.1;
- if (k == n-1) muCur = right - left;
- else muCur = (right - left) * 0.5;
- } else {
- muPrev = -(right - left) * 0.1;
- muCur = -(right - left) * 0.5;
- }
-
- RealScalar fPrev = 1 + (col0.square() / ((diagShifted - muPrev) * (diag + shift + muPrev))).sum();
- RealScalar fCur = 1 + (col0.square() / ((diagShifted - muCur) * (diag + shift + muCur))).sum();
- if (abs(fPrev) < abs(fCur)) {
- swap(fPrev, fCur);
- swap(muPrev, muCur);
- }
-
- // rational interpolation: fit a function of the form a / mu + b through the two previous
- // iterates and use its zero to compute the next iterate
- bool useBisection = false;
- while (abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * (std::max)(abs(muCur), abs(muPrev)) && fCur != fPrev && !useBisection) {
- ++m_numIters;
-
- RealScalar a = (fCur - fPrev) / (1/muCur - 1/muPrev);
- RealScalar b = fCur - a / muCur;
-
- muPrev = muCur;
- fPrev = fCur;
- muCur = -a / b;
- fCur = 1 + (col0.square() / ((diagShifted - muCur) * (diag + shift + muCur))).sum();
-
- if (shift == left && (muCur < 0 || muCur > right - left)) useBisection = true;
- if (shift == right && (muCur < -(right - left) || muCur > 0)) useBisection = true;
- }
-
- // fall back on bisection method if rational interpolation did not work
- if (useBisection) {
- RealScalar leftShifted, rightShifted;
- if (shift == left) {
- leftShifted = 1e-30;
- if (k == 0) rightShifted = right - left;
- else rightShifted = (right - left) * 0.6; // theoretically we can take 0.5, but let's be safe
- } else {
- leftShifted = -(right - left) * 0.6;
- rightShifted = -1e-30;
- }
-
- RealScalar fLeft = 1 + (col0.square() / ((diagShifted - leftShifted) * (diag + shift + leftShifted))).sum();
- RealScalar fRight = 1 + (col0.square() / ((diagShifted - rightShifted) * (diag + shift + rightShifted))).sum();
- assert(fLeft * fRight < 0);
-
- while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * (std::max)(abs(leftShifted), abs(rightShifted))) {
- RealScalar midShifted = (leftShifted + rightShifted) / 2;
- RealScalar fMid = 1 + (col0.square() / ((diagShifted - midShifted) * (diag + shift + midShifted))).sum();
- if (fLeft * fMid < 0) {
- rightShifted = midShifted;
- fRight = fMid;
- } else {
- leftShifted = midShifted;
- fLeft = fMid;
- }
- }
-
- muCur = (leftShifted + rightShifted) / 2;
- }
-
- singVals[k] = shift + muCur;
- shifts[k] = shift;
- mus[k] = muCur;
-
- // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
- // (deflation is supposed to avoid this from happening)
- if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
- if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
- }
-}
-
-
-// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
-template <typename MatrixType>
-void BDCSVD<MatrixType>::perturbCol0
- (const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals,
- const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat)
-{
- Index n = col0.size();
- for (Index k = 0; k < n; ++k) {
- if (col0(k) == 0)
- zhat(k) = 0;
- else {
- // see equation (3.6)
- using std::sqrt;
- RealScalar tmp =
- sqrt(
- (singVals(n-1) + diag(k)) * (mus(n-1) + (shifts(n-1) - diag(k)))
- * (
- ((singVals.head(k).array() + diag(k)) * (mus.head(k) + (shifts.head(k) - diag(k))))
- / ((diag.head(k).array() + diag(k)) * (diag.head(k).array() - diag(k)))
- ).prod()
- * (
- ((singVals.segment(k, n-k-1).array() + diag(k)) * (mus.segment(k, n-k-1) + (shifts.segment(k, n-k-1) - diag(k))))
- / ((diag.tail(n-k-1) + diag(k)) * (diag.tail(n-k-1) - diag(k)))
- ).prod()
- );
- if (col0(k) > 0) zhat(k) = tmp;
- else zhat(k) = -tmp;
- }
- }
-}
-
-// compute singular vectors
-template <typename MatrixType>
-void BDCSVD<MatrixType>::computeSingVecs
- (const ArrayXr& zhat, const ArrayXr& diag, const VectorType& singVals,
- const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V)
-{
- Index n = zhat.size();
- for (Index k = 0; k < n; ++k) {
- if (zhat(k) == 0) {
- U.col(k) = VectorType::Unit(n+1, k);
- if (compV) V.col(k) = VectorType::Unit(n, k);
- } else {
- U.col(k).head(n) = zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k]));
- U(n,k) = 0;
- U.col(k).normalize();
-
- if (compV) {
- V.col(k).tail(n-1) = (diag * zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k]))).tail(n-1);
- V(0,k) = -1;
- V.col(k).normalize();
- }
- }
- }
- U.col(n) = VectorType::Unit(n+1, n);
-}
-
-
-// page 12_13
-// i >= 1, di almost null and zi non null.
-// We use a rotation to zero out zi applied to the left of M
-template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
- using std::abs;
- using std::sqrt;
- using std::pow;
- RealScalar c = m_computed(firstCol + shift, firstCol + shift);
- RealScalar s = m_computed(i, firstCol + shift);
- RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
- if (r == 0){
- m_computed(i, i)=0;
- return;
- }
- c/=r;
- s/=r;
- m_computed(firstCol + shift, firstCol + shift) = r;
- m_computed(i, firstCol + shift) = 0;
- m_computed(i, i) = 0;
- if (compU){
- m_naiveU.col(firstCol).segment(firstCol,size) =
- c * m_naiveU.col(firstCol).segment(firstCol, size) -
- s * m_naiveU.col(i).segment(firstCol, size) ;
-
- m_naiveU.col(i).segment(firstCol, size) =
- (c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) +
- (s/c) * m_naiveU.col(firstCol).segment(firstCol,size);
- }
-}// end deflation 43
-
-
-// page 13
-// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
-// We apply two rotations to have zj = 0;
-template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
- using std::abs;
- using std::sqrt;
- using std::conj;
- using std::pow;
- RealScalar c = m_computed(firstColm, firstColm + j - 1);
- RealScalar s = m_computed(firstColm, firstColm + i - 1);
- RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
- if (r==0){
- m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
- return;
- }
- c/=r;
- s/=r;
- m_computed(firstColm + i, firstColm) = r;
- m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
- m_computed(firstColm + j, firstColm) = 0;
- if (compU){
- m_naiveU.col(firstColu + i).segment(firstColu, size) =
- c * m_naiveU.col(firstColu + i).segment(firstColu, size) -
- s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;
-
- m_naiveU.col(firstColu + j).segment(firstColu, size) =
- (c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) +
- (s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
- }
- if (compV){
- m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) =
- c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) +
- s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;
-
- m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) =
- (c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) -
- (s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1);
- }
-}// end deflation 44
-
-
-// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
-template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
- //condition 4.1
- using std::sqrt;
- const Index length = lastCol + 1 - firstCol;
- RealScalar norm1 = m_computed.block(firstCol+shift, firstCol+shift, length, 1).squaredNorm();
- RealScalar norm2 = m_computed.block(firstCol+shift, firstCol+shift, length, length).diagonal().squaredNorm();
- RealScalar EPS = 10 * NumTraits<RealScalar>::epsilon() * sqrt(norm1 + norm2);
- if (m_computed(firstCol + shift, firstCol + shift) < EPS){
- m_computed(firstCol + shift, firstCol + shift) = EPS;
- }
-
- //condition 4.2
- for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
- if (std::abs(m_computed(i, firstCol + shift)) < EPS){
- m_computed(i, firstCol + shift) = 0;
- }
- }
-
- //condition 4.3
- for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
- if (m_computed(i, i) < EPS){
- deflation43(firstCol, shift, i, length);
- }
- }
-
- //condition 4.4
-
- Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
- //we stock the final place of each line
- Index *permutation = new Index[length];
-
- for (Index p =1; p < length; p++) {
- if (i> firstCol + shift + k){
- permutation[p] = j;
- j++;
- } else if (j> lastCol + shift)
- {
- permutation[p] = i;
- i++;
- }
- else
- {
- if (m_computed(i, i) < m_computed(j, j)){
- permutation[p] = j;
- j++;
- }
- else
- {
- permutation[p] = i;
- i++;
- }
- }
- }
- //we do the permutation
- RealScalar aux;
- //we stock the current index of each col
- //and the column of each index
- Index *realInd = new Index[length];
- Index *realCol = new Index[length];
- for (int pos = 0; pos< length; pos++){
- realCol[pos] = pos + firstCol + shift;
- realInd[pos] = pos;
- }
- const Index Zero = firstCol + shift;
- VectorType temp;
- for (int i = 1; i < length - 1; i++){
- const Index I = i + Zero;
- const Index realI = realInd[i];
- const Index j = permutation[length - i] - Zero;
- const Index J = realCol[j];
-
- //diag displace
- aux = m_computed(I, I);
- m_computed(I, I) = m_computed(J, J);
- m_computed(J, J) = aux;
-
- //firstrow displace
- aux = m_computed(I, Zero);
- m_computed(I, Zero) = m_computed(J, Zero);
- m_computed(J, Zero) = aux;
-
- // change columns
- if (compU) {
- temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
- m_naiveU.col(I - shift).segment(firstCol, length + 1) <<
- m_naiveU.col(J - shift).segment(firstCol, length + 1);
- m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
- }
- else
- {
- temp = m_naiveU.col(I - shift).segment(0, 2);
- m_naiveU.col(I - shift).segment(0, 2) <<
- m_naiveU.col(J - shift).segment(0, 2);
- m_naiveU.col(J - shift).segment(0, 2) << temp;
- }
- if (compV) {
- const Index CWI = I + firstColW - Zero;
- const Index CWJ = J + firstColW - Zero;
- temp = m_naiveV.col(CWI).segment(firstRowW, length);
- m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
- m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
- }
-
- //update real pos
- realCol[realI] = J;
- realCol[j] = I;
- realInd[J - Zero] = realI;
- realInd[I - Zero] = j;
- }
- for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
- if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
- deflation44(firstCol ,
- firstCol + shift,
- firstRowW,
- firstColW,
- i - Zero,
- i + 1 - Zero,
- length);
- }
- }
- delete [] permutation;
- delete [] realInd;
- delete [] realCol;
-}//end deflation
-
-
-namespace internal{
-
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<BDCSVD<_MatrixType>, Rhs>
- : solve_retval_base<BDCSVD<_MatrixType>, Rhs>
-{
- typedef BDCSVD<_MatrixType> BDCSVDType;
- EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs)
-
- template<typename Dest> void evalTo(Dest& dst) const
- {
- eigen_assert(rhs().rows() == dec().rows());
- // A = U S V^*
- // So A^{ - 1} = V S^{ - 1} U^*
- Index diagSize = (std::min)(dec().rows(), dec().cols());
- typename BDCSVDType::SingularValuesType invertedSingVals(diagSize);
- Index nonzeroSingVals = dec().nonzeroSingularValues();
- invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
- invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
-
- dst = dec().matrixV().leftCols(diagSize)
- * invertedSingVals.asDiagonal()
- * dec().matrixU().leftCols(diagSize).adjoint()
- * rhs();
- return;
- }
-};
-
-} //end namespace internal
-
- /** \svd_module
- *
- * \return the singular value decomposition of \c *this computed by
- * BDC Algorithm
- *
- * \sa class BDCSVD
- */
-/*
-template<typename Derived>
-BDCSVD<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
-{
- return BDCSVD<PlainObject>(*this, computationOptions);
-}
-*/
-
-} // end namespace Eigen
-
-#endif