aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h238
1 files changed, 226 insertions, 12 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h b/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
index 49102fca2..c33d54d6e 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
@@ -7,8 +7,8 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
-#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
+#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H
namespace Eigen {
namespace internal {
@@ -76,26 +76,37 @@ __device__ inline void atomicReduce(T* output, T accum, SumReducer<T>&) {
#endif
}
+
+template <typename CoeffType, typename Index>
+__global__ void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) {
+ const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
+ const Index num_threads = blockDim.x * gridDim.x;
+ for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
+ output[i] = val;
+ }
+}
+
template <int BlockSize, int NumPerThread, typename Self,
typename Reducer, typename Index>
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
typename Self::CoeffReturnType* output) {
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
- if (first_index == 0) {
+ // Initialize the output value if it wasn't initialized by the ReductionInitKernel
+ if (gridDim.x == 1 && first_index == 0) {
*output = reducer.initialize();
}
typename Self::CoeffReturnType accum = reducer.initialize();
- for (Index i = 0; i < NumPerThread; ++i) {
- const Index index = first_index + i * BlockSize;
- if (index >= num_coeffs) {
- break;
- }
+ Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize);
+ for (Index i = 0; i < max_iter; i+=BlockSize) {
+ const Index index = first_index + i;
+ eigen_assert(index < num_coeffs);
typename Self::CoeffReturnType val = input.m_impl.coeff(index);
reducer.reduce(val, &accum);
}
+#pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) {
reducer.reduce(__shfl_down(accum, offset), &accum);
}
@@ -115,26 +126,229 @@ struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
internal::is_same<typename Self::CoeffReturnType, float>::value;
template <typename OutputType>
- EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
+ static EIGEN_DEVICE_FUNC void run(const Self&, Op&, const GpuDevice&, OutputType*) {
assert(false && "Should only be called on floats");
}
- EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
+ static EIGEN_DEVICE_FUNC void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
typedef typename Self::Index Index;
const Index num_coeffs = array_prod(self.m_impl.dimensions());
const int block_size = 256;
const int num_per_thread = 128;
const int num_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
- LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread>),
+
+ if (num_blocks > 1) {
+ // We initialize the outputs outside the reduction kernel when we can't be sure that there
+ // won't be a race conditions between multiple thread blocks.
+ LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
+ 1, 32, 0, device, reducer.initialize(), 1, output);
+ }
+
+ LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output);
}
};
+
+template <int NumPerThread, typename Self,
+ typename Reducer, typename Index>
+__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
+ typename Self::CoeffReturnType* output) {
+ eigen_assert(blockDim.y == 1);
+ eigen_assert(blockDim.z == 1);
+ eigen_assert(gridDim.y == 1);
+ eigen_assert(gridDim.z == 1);
+
+ const int unroll_times = 16;
+ eigen_assert(NumPerThread % unroll_times == 0);
+
+ const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
+ const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;
+
+ const Index num_threads = blockDim.x * gridDim.x;
+ const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
+
+ // Initialize the output values if they weren't initialized by the ReductionInitKernel
+ if (gridDim.x == 1) {
+ for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
+ output[i] = reducer.initialize();
+ }
+ }
+
+ for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
+ const Index row = i / input_col_blocks;
+
+ if (row < num_preserved_coeffs) {
+ const Index col_block = i % input_col_blocks;
+ const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;
+
+ float reduced_val = reducer.initialize();
+
+ for (Index j = 0; j < NumPerThread; j += unroll_times) {
+ const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
+ if (last_col >= num_coeffs_to_reduce) {
+ for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col +=blockDim.x) {
+ const float val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
+ reducer.reduce(val, &reduced_val);
+ }
+ break;
+ } else {
+ // Faster version of the loop with no branches after unrolling.
+#pragma unroll
+ for (int k = 0; k < unroll_times; ++k) {
+ const Index col = col_begin + blockDim.x * (j + k);
+ reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val);
+ }
+ }
+ }
+
+#pragma unroll
+ for (int offset = warpSize/2; offset > 0; offset /= 2) {
+ reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
+ }
+
+ if ((threadIdx.x & (warpSize - 1)) == 0) {
+ atomicReduce(&(output[row]), reduced_val, reducer);
+ }
+ }
+
+ __syncthreads();
+ }
+}
+
+template <typename Self, typename Op>
+struct InnerReducer<Self, Op, GpuDevice> {
+ // Unfortunately nvidia doesn't support well exotic types such as complex,
+ // so reduce the scope of the optimized version of the code to the simple case
+ // of floats.
+ static const bool HasOptimizedImplementation = !Op::IsStateful &&
+ internal::is_same<typename Self::CoeffReturnType, float>::value;
+
+ template <typename Device, typename OutputType>
+ static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
+ assert(false && "Should only be called to reduce floats on a gpu device");
+ return true;
+ }
+
+ static EIGEN_DEVICE_FUNC bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
+ typedef typename Self::Index Index;
+
+ // It's faster to use the usual code.
+ if (num_coeffs_to_reduce <= 32) {
+ return true;
+ }
+
+ const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
+ const int block_size = 256;
+ const int num_per_thread = 128;
+ const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / block_size;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+
+ if (num_blocks > 1) {
+ // We initialize the outputs outside the reduction kernel when we can't be sure that there
+ // won't be a race conditions between multiple thread blocks.
+ const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / 1024;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+ LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
+ num_blocks, 1024, 0, device, reducer.initialize(),
+ num_preserved_vals, output);
+ }
+
+ LAUNCH_CUDA_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
+ num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
+
+ return false;
+ }
+};
+
+
+template <int NumPerThread, typename Self,
+ typename Reducer, typename Index>
+__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
+ typename Self::CoeffReturnType* output) {
+ const Index num_threads = blockDim.x * gridDim.x;
+ const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
+ // Initialize the output values if they weren't initialized by the ReductionInitKernel
+ if (gridDim.x == 1) {
+ for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
+ output[i] = reducer.initialize();
+ }
+ }
+
+ // Do the reduction.
+ const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread);
+ for (Index i = thread_id; i < max_iter; i += num_threads) {
+ const Index input_col = i % num_preserved_coeffs;
+ const Index input_row = (i / num_preserved_coeffs) * NumPerThread;
+ typename Self::CoeffReturnType reduced_val = reducer.initialize();
+ const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce);
+ for (Index j = input_row; j < max_row; j++) {
+ typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col);
+ reducer.reduce(val, &reduced_val);
+ }
+ atomicReduce(&(output[input_col]), reduced_val, reducer);
+ }
+}
+
+
+template <typename Self, typename Op>
+struct OuterReducer<Self, Op, GpuDevice> {
+ // Unfortunately nvidia doesn't support well exotic types such as complex,
+ // so reduce the scope of the optimized version of the code to the simple case
+ // of floats.
+ static const bool HasOptimizedImplementation = !Op::IsStateful &&
+ internal::is_same<typename Self::CoeffReturnType, float>::value;
+
+ template <typename Device, typename OutputType>
+ static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
+ assert(false && "Should only be called to reduce floats on a gpu device");
+ return true;
+ }
+
+ static EIGEN_DEVICE_FUNC bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
+ typedef typename Self::Index Index;
+
+ // It's faster to use the usual code.
+ if (num_coeffs_to_reduce <= 32) {
+ return true;
+ }
+
+ const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
+ const int block_size = 256;
+ const int num_per_thread = 16;
+ const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / block_size;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+
+ if (num_blocks > 1) {
+ // We initialize the outputs in the reduction kernel itself when we don't have to worry
+ // about race conditions between multiple thread blocks.
+ const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
+ const int max_blocks = device.getNumCudaMultiProcessors() *
+ device.maxCudaThreadsPerMultiProcessor() / 1024;
+ const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
+ LAUNCH_CUDA_KERNEL((ReductionInitKernel<float, Index>),
+ num_blocks, 1024, 0, device, reducer.initialize(),
+ num_preserved_vals, output);
+ }
+
+ LAUNCH_CUDA_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
+ num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
+
+ return false;
+ }
+};
+
#endif
} // end namespace internal
} // end namespace Eigen
-#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
+#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_CUDA_H