aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/eigen2/eigen2_sparse_basic.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/eigen2/eigen2_sparse_basic.cpp')
-rw-r--r--test/eigen2/eigen2_sparse_basic.cpp332
1 files changed, 332 insertions, 0 deletions
diff --git a/test/eigen2/eigen2_sparse_basic.cpp b/test/eigen2/eigen2_sparse_basic.cpp
new file mode 100644
index 000000000..4e9f8e9f2
--- /dev/null
+++ b/test/eigen2/eigen2_sparse_basic.cpp
@@ -0,0 +1,332 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#include "sparse.h"
+
+template<typename SetterType,typename DenseType, typename Scalar, int Options>
+bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
+{
+ typedef SparseMatrix<Scalar,Options> SparseType;
+ {
+ sm.setZero();
+ SetterType w(sm);
+ std::vector<Vector2i> remaining = nonzeroCoords;
+ while(!remaining.empty())
+ {
+ int i = ei_random<int>(0,remaining.size()-1);
+ w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
+ remaining[i] = remaining.back();
+ remaining.pop_back();
+ }
+ }
+ return sm.isApprox(ref);
+}
+
+template<typename SetterType,typename DenseType, typename T>
+bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
+{
+ sm.setZero();
+ std::vector<Vector2i> remaining = nonzeroCoords;
+ while(!remaining.empty())
+ {
+ int i = ei_random<int>(0,remaining.size()-1);
+ sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
+ remaining[i] = remaining.back();
+ remaining.pop_back();
+ }
+ return sm.isApprox(ref);
+}
+
+template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
+{
+ const int rows = ref.rows();
+ const int cols = ref.cols();
+ typedef typename SparseMatrixType::Scalar Scalar;
+ enum { Flags = SparseMatrixType::Flags };
+
+ double density = std::max(8./(rows*cols), 0.01);
+ typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+ typedef Matrix<Scalar,Dynamic,1> DenseVector;
+ Scalar eps = 1e-6;
+
+ SparseMatrixType m(rows, cols);
+ DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
+ DenseVector vec1 = DenseVector::Random(rows);
+ Scalar s1 = ei_random<Scalar>();
+
+ std::vector<Vector2i> zeroCoords;
+ std::vector<Vector2i> nonzeroCoords;
+ initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
+
+ if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
+ return;
+
+ // test coeff and coeffRef
+ for (int i=0; i<(int)zeroCoords.size(); ++i)
+ {
+ VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
+ if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret)
+ VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
+ }
+ VERIFY_IS_APPROX(m, refMat);
+
+ m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
+ refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
+
+ VERIFY_IS_APPROX(m, refMat);
+ /*
+ // test InnerIterators and Block expressions
+ for (int t=0; t<10; ++t)
+ {
+ int j = ei_random<int>(0,cols-1);
+ int i = ei_random<int>(0,rows-1);
+ int w = ei_random<int>(1,cols-j-1);
+ int h = ei_random<int>(1,rows-i-1);
+
+// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
+ for(int c=0; c<w; c++)
+ {
+ VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
+ for(int r=0; r<h; r++)
+ {
+// VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
+ }
+ }
+// for(int r=0; r<h; r++)
+// {
+// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
+// for(int c=0; c<w; c++)
+// {
+// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
+// }
+// }
+ }
+
+ for(int c=0; c<cols; c++)
+ {
+ VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
+ VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
+ }
+
+ for(int r=0; r<rows; r++)
+ {
+ VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
+ VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
+ }
+ */
+
+ // test SparseSetters
+ // coherent setter
+ // TODO extend the MatrixSetter
+// {
+// m.setZero();
+// VERIFY_IS_NOT_APPROX(m, refMat);
+// SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m);
+// for (int i=0; i<nonzeroCoords.size(); ++i)
+// {
+// w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
+// }
+// }
+// VERIFY_IS_APPROX(m, refMat);
+
+ // random setter
+// {
+// m.setZero();
+// VERIFY_IS_NOT_APPROX(m, refMat);
+// SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
+// std::vector<Vector2i> remaining = nonzeroCoords;
+// while(!remaining.empty())
+// {
+// int i = ei_random<int>(0,remaining.size()-1);
+// w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
+// remaining[i] = remaining.back();
+// remaining.pop_back();
+// }
+// }
+// VERIFY_IS_APPROX(m, refMat);
+
+ VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) ));
+ #ifdef EIGEN_UNORDERED_MAP_SUPPORT
+ VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) ));
+ #endif
+ #ifdef _DENSE_HASH_MAP_H_
+ VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
+ #endif
+ #ifdef _SPARSE_HASH_MAP_H_
+ VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
+ #endif
+
+ // test fillrand
+ {
+ DenseMatrix m1(rows,cols);
+ m1.setZero();
+ SparseMatrixType m2(rows,cols);
+ m2.startFill();
+ for (int j=0; j<cols; ++j)
+ {
+ for (int k=0; k<rows/2; ++k)
+ {
+ int i = ei_random<int>(0,rows-1);
+ if (m1.coeff(i,j)==Scalar(0))
+ m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>();
+ }
+ }
+ m2.endFill();
+ VERIFY_IS_APPROX(m2,m1);
+ }
+
+ // test RandomSetter
+ /*{
+ SparseMatrixType m1(rows,cols), m2(rows,cols);
+ DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
+ initSparse<Scalar>(density, refM1, m1);
+ {
+ Eigen::RandomSetter<SparseMatrixType > setter(m2);
+ for (int j=0; j<m1.outerSize(); ++j)
+ for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
+ setter(i.index(), j) = i.value();
+ }
+ VERIFY_IS_APPROX(m1, m2);
+ }*/
+// std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n";
+// VERIFY_IS_APPROX(m, refMat);
+
+ // test basic computations
+ {
+ DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
+ DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
+ DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
+ DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
+ SparseMatrixType m1(rows, rows);
+ SparseMatrixType m2(rows, rows);
+ SparseMatrixType m3(rows, rows);
+ SparseMatrixType m4(rows, rows);
+ initSparse<Scalar>(density, refM1, m1);
+ initSparse<Scalar>(density, refM2, m2);
+ initSparse<Scalar>(density, refM3, m3);
+ initSparse<Scalar>(density, refM4, m4);
+
+ VERIFY_IS_APPROX(m1+m2, refM1+refM2);
+ VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
+ VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2));
+ VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
+
+ VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
+ VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
+
+ VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
+ VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
+
+ VERIFY_IS_APPROX(m1.col(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));
+
+ refM4.setRandom();
+ // sparse cwise* dense
+ VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4);
+// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
+ }
+
+ // test innerVector()
+ {
+ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
+ SparseMatrixType m2(rows, rows);
+ initSparse<Scalar>(density, refMat2, m2);
+ int j0 = ei_random(0,rows-1);
+ int j1 = ei_random(0,rows-1);
+ VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
+ VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
+ //m2.innerVector(j0) = 2*m2.innerVector(j1);
+ //refMat2.col(j0) = 2*refMat2.col(j1);
+ //VERIFY_IS_APPROX(m2, refMat2);
+ }
+
+ // test innerVectors()
+ {
+ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
+ SparseMatrixType m2(rows, rows);
+ initSparse<Scalar>(density, refMat2, m2);
+ int j0 = ei_random(0,rows-2);
+ int j1 = ei_random(0,rows-2);
+ int n0 = ei_random<int>(1,rows-std::max(j0,j1));
+ VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
+ VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
+ refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
+ //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
+ //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
+ }
+
+ // test transpose
+ {
+ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
+ SparseMatrixType m2(rows, rows);
+ initSparse<Scalar>(density, refMat2, m2);
+ VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
+ VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
+ }
+
+ // test prune
+ {
+ SparseMatrixType m2(rows, rows);
+ DenseMatrix refM2(rows, rows);
+ refM2.setZero();
+ int countFalseNonZero = 0;
+ int countTrueNonZero = 0;
+ m2.startFill();
+ for (int j=0; j<m2.outerSize(); ++j)
+ for (int i=0; i<m2.innerSize(); ++i)
+ {
+ float x = ei_random<float>(0,1);
+ if (x<0.1)
+ {
+ // do nothing
+ }
+ else if (x<0.5)
+ {
+ countFalseNonZero++;
+ m2.fill(i,j) = Scalar(0);
+ }
+ else
+ {
+ countTrueNonZero++;
+ m2.fill(i,j) = refM2(i,j) = Scalar(1);
+ }
+ }
+ m2.endFill();
+ VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
+ VERIFY_IS_APPROX(m2, refM2);
+ m2.prune(1);
+ VERIFY(countTrueNonZero==m2.nonZeros());
+ VERIFY_IS_APPROX(m2, refM2);
+ }
+}
+
+void test_eigen2_sparse_basic()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) );
+ CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) );
+ CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) );
+
+ CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) );
+ }
+}