aboutsummaryrefslogtreecommitdiffhomepage
path: root/blas/fortran/dspmv.f
diff options
context:
space:
mode:
Diffstat (limited to 'blas/fortran/dspmv.f')
-rw-r--r--blas/fortran/dspmv.f265
1 files changed, 265 insertions, 0 deletions
diff --git a/blas/fortran/dspmv.f b/blas/fortran/dspmv.f
new file mode 100644
index 000000000..f6e121e76
--- /dev/null
+++ b/blas/fortran/dspmv.f
@@ -0,0 +1,265 @@
+ SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
+* .. Scalar Arguments ..
+ DOUBLE PRECISION ALPHA,BETA
+ INTEGER INCX,INCY,N
+ CHARACTER UPLO
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION AP(*),X(*),Y(*)
+* ..
+*
+* Purpose
+* =======
+*
+* DSPMV performs the matrix-vector operation
+*
+* y := alpha*A*x + beta*y,
+*
+* where alpha and beta are scalars, x and y are n element vectors and
+* A is an n by n symmetric matrix, supplied in packed form.
+*
+* Arguments
+* ==========
+*
+* UPLO - CHARACTER*1.
+* On entry, UPLO specifies whether the upper or lower
+* triangular part of the matrix A is supplied in the packed
+* array AP as follows:
+*
+* UPLO = 'U' or 'u' The upper triangular part of A is
+* supplied in AP.
+*
+* UPLO = 'L' or 'l' The lower triangular part of A is
+* supplied in AP.
+*
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the order of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - DOUBLE PRECISION.
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* AP - DOUBLE PRECISION array of DIMENSION at least
+* ( ( n*( n + 1 ) )/2 ).
+* Before entry with UPLO = 'U' or 'u', the array AP must
+* contain the upper triangular part of the symmetric matrix
+* packed sequentially, column by column, so that AP( 1 )
+* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
+* and a( 2, 2 ) respectively, and so on.
+* Before entry with UPLO = 'L' or 'l', the array AP must
+* contain the lower triangular part of the symmetric matrix
+* packed sequentially, column by column, so that AP( 1 )
+* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
+* and a( 3, 1 ) respectively, and so on.
+* Unchanged on exit.
+*
+* X - DOUBLE PRECISION array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCX ) ).
+* Before entry, the incremented array X must contain the n
+* element vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* BETA - DOUBLE PRECISION.
+* On entry, BETA specifies the scalar beta. When BETA is
+* supplied as zero then Y need not be set on input.
+* Unchanged on exit.
+*
+* Y - DOUBLE PRECISION array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCY ) ).
+* Before entry, the incremented array Y must contain the n
+* element vector y. On exit, Y is overwritten by the updated
+* vector y.
+*
+* INCY - INTEGER.
+* On entry, INCY specifies the increment for the elements of
+* Y. INCY must not be zero.
+* Unchanged on exit.
+*
+* Further Details
+* ===============
+*
+* Level 2 Blas routine.
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE,ZERO
+ PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION TEMP1,TEMP2
+ INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
+ INFO = 1
+ ELSE IF (N.LT.0) THEN
+ INFO = 2
+ ELSE IF (INCX.EQ.0) THEN
+ INFO = 6
+ ELSE IF (INCY.EQ.0) THEN
+ INFO = 9
+ END IF
+ IF (INFO.NE.0) THEN
+ CALL XERBLA('DSPMV ',INFO)
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
+*
+* Set up the start points in X and Y.
+*
+ IF (INCX.GT.0) THEN
+ KX = 1
+ ELSE
+ KX = 1 - (N-1)*INCX
+ END IF
+ IF (INCY.GT.0) THEN
+ KY = 1
+ ELSE
+ KY = 1 - (N-1)*INCY
+ END IF
+*
+* Start the operations. In this version the elements of the array AP
+* are accessed sequentially with one pass through AP.
+*
+* First form y := beta*y.
+*
+ IF (BETA.NE.ONE) THEN
+ IF (INCY.EQ.1) THEN
+ IF (BETA.EQ.ZERO) THEN
+ DO 10 I = 1,N
+ Y(I) = ZERO
+ 10 CONTINUE
+ ELSE
+ DO 20 I = 1,N
+ Y(I) = BETA*Y(I)
+ 20 CONTINUE
+ END IF
+ ELSE
+ IY = KY
+ IF (BETA.EQ.ZERO) THEN
+ DO 30 I = 1,N
+ Y(IY) = ZERO
+ IY = IY + INCY
+ 30 CONTINUE
+ ELSE
+ DO 40 I = 1,N
+ Y(IY) = BETA*Y(IY)
+ IY = IY + INCY
+ 40 CONTINUE
+ END IF
+ END IF
+ END IF
+ IF (ALPHA.EQ.ZERO) RETURN
+ KK = 1
+ IF (LSAME(UPLO,'U')) THEN
+*
+* Form y when AP contains the upper triangle.
+*
+ IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
+ DO 60 J = 1,N
+ TEMP1 = ALPHA*X(J)
+ TEMP2 = ZERO
+ K = KK
+ DO 50 I = 1,J - 1
+ Y(I) = Y(I) + TEMP1*AP(K)
+ TEMP2 = TEMP2 + AP(K)*X(I)
+ K = K + 1
+ 50 CONTINUE
+ Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
+ KK = KK + J
+ 60 CONTINUE
+ ELSE
+ JX = KX
+ JY = KY
+ DO 80 J = 1,N
+ TEMP1 = ALPHA*X(JX)
+ TEMP2 = ZERO
+ IX = KX
+ IY = KY
+ DO 70 K = KK,KK + J - 2
+ Y(IY) = Y(IY) + TEMP1*AP(K)
+ TEMP2 = TEMP2 + AP(K)*X(IX)
+ IX = IX + INCX
+ IY = IY + INCY
+ 70 CONTINUE
+ Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
+ JX = JX + INCX
+ JY = JY + INCY
+ KK = KK + J
+ 80 CONTINUE
+ END IF
+ ELSE
+*
+* Form y when AP contains the lower triangle.
+*
+ IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
+ DO 100 J = 1,N
+ TEMP1 = ALPHA*X(J)
+ TEMP2 = ZERO
+ Y(J) = Y(J) + TEMP1*AP(KK)
+ K = KK + 1
+ DO 90 I = J + 1,N
+ Y(I) = Y(I) + TEMP1*AP(K)
+ TEMP2 = TEMP2 + AP(K)*X(I)
+ K = K + 1
+ 90 CONTINUE
+ Y(J) = Y(J) + ALPHA*TEMP2
+ KK = KK + (N-J+1)
+ 100 CONTINUE
+ ELSE
+ JX = KX
+ JY = KY
+ DO 120 J = 1,N
+ TEMP1 = ALPHA*X(JX)
+ TEMP2 = ZERO
+ Y(JY) = Y(JY) + TEMP1*AP(KK)
+ IX = JX
+ IY = JY
+ DO 110 K = KK + 1,KK + N - J
+ IX = IX + INCX
+ IY = IY + INCY
+ Y(IY) = Y(IY) + TEMP1*AP(K)
+ TEMP2 = TEMP2 + AP(K)*X(IX)
+ 110 CONTINUE
+ Y(JY) = Y(JY) + ALPHA*TEMP2
+ JX = JX + INCX
+ JY = JY + INCY
+ KK = KK + (N-J+1)
+ 120 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of DSPMV .
+*
+ END