aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/QR/ColPivotingHouseholderQR.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/QR/ColPivotingHouseholderQR.h')
-rw-r--r--Eigen/src/QR/ColPivotingHouseholderQR.h266
1 files changed, 266 insertions, 0 deletions
diff --git a/Eigen/src/QR/ColPivotingHouseholderQR.h b/Eigen/src/QR/ColPivotingHouseholderQR.h
new file mode 100644
index 000000000..ed4b84f63
--- /dev/null
+++ b/Eigen/src/QR/ColPivotingHouseholderQR.h
@@ -0,0 +1,266 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
+// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
+#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
+
+/** \ingroup QR_Module
+ * \nonstableyet
+ *
+ * \class ColPivotingHouseholderQR
+ *
+ * \brief Householder rank-revealing QR decomposition of a matrix
+ *
+ * \param MatrixType the type of the matrix of which we are computing the QR decomposition
+ *
+ * This class performs a rank-revealing QR decomposition using Householder transformations.
+ *
+ * This decomposition performs full-pivoting in order to be rank-revealing and achieve optimal
+ * numerical stability.
+ *
+ * \sa MatrixBase::colPivotingHouseholderQr()
+ */
+template<typename MatrixType> class ColPivotingHouseholderQR
+{
+ public:
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ DiagSizeAtCompileTime = EIGEN_ENUM_MIN(ColsAtCompileTime,RowsAtCompileTime)
+ };
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixQType;
+ typedef Matrix<Scalar, DiagSizeAtCompileTime, 1> HCoeffsType;
+ typedef Matrix<int, 1, ColsAtCompileTime> IntRowVectorType;
+ typedef Matrix<int, RowsAtCompileTime, 1> IntColVectorType;
+ typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
+ typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
+ typedef Matrix<RealScalar, 1, ColsAtCompileTime> RealRowVectorType;
+
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via ColPivotingHouseholderQR::compute(const MatrixType&).
+ */
+ ColPivotingHouseholderQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
+
+ ColPivotingHouseholderQR(const MatrixType& matrix)
+ : m_qr(matrix.rows(), matrix.cols()),
+ m_hCoeffs(std::min(matrix.rows(),matrix.cols())),
+ m_isInitialized(false)
+ {
+ compute(matrix);
+ }
+
+ /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the QR decomposition, if any exists.
+ *
+ * \param b the right-hand-side of the equation to solve.
+ *
+ * \param result a pointer to the vector/matrix in which to store the solution, if any exists.
+ * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
+ * If no solution exists, *result is left with undefined coefficients.
+ *
+ * \note The case where b is a matrix is not yet implemented. Also, this
+ * code is space inefficient.
+ *
+ * Example: \include ColPivotingHouseholderQR_solve.cpp
+ * Output: \verbinclude ColPivotingHouseholderQR_solve.out
+ */
+ template<typename OtherDerived, typename ResultType>
+ void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
+
+ MatrixType matrixQ(void) const;
+
+ /** \returns a reference to the matrix where the Householder QR decomposition is stored
+ */
+ const MatrixType& matrixQR() const { return m_qr; }
+
+ ColPivotingHouseholderQR& compute(const MatrixType& matrix);
+
+ const IntRowVectorType& colsPermutation() const
+ {
+ ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
+ return m_cols_permutation;
+ }
+
+ inline int rank() const
+ {
+ ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
+ return m_rank;
+ }
+
+ protected:
+ MatrixType m_qr;
+ HCoeffsType m_hCoeffs;
+ IntRowVectorType m_cols_permutation;
+ bool m_isInitialized;
+ RealScalar m_precision;
+ int m_rank;
+ int m_det_pq;
+};
+
+#ifndef EIGEN_HIDE_HEAVY_CODE
+
+template<typename MatrixType>
+ColPivotingHouseholderQR<MatrixType>& ColPivotingHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
+{
+ int rows = matrix.rows();
+ int cols = matrix.cols();
+ int size = std::min(rows,cols);
+ m_rank = size;
+
+ m_qr = matrix;
+ m_hCoeffs.resize(size);
+
+ RowVectorType temp(cols);
+
+ m_precision = epsilon<Scalar>() * size;
+
+ IntRowVectorType cols_transpositions(matrix.cols());
+ m_cols_permutation.resize(matrix.cols());
+ int number_of_transpositions = 0;
+
+ RealRowVectorType colSqNorms(cols);
+ for(int k = 0; k < cols; ++k)
+ colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
+ RealScalar biggestColSqNorm = colSqNorms.maxCoeff();
+
+ for (int k = 0; k < size; ++k)
+ {
+ int biggest_col_in_corner;
+ RealScalar biggestColSqNormInCorner = colSqNorms.end(cols-k).maxCoeff(&biggest_col_in_corner);
+ biggest_col_in_corner += k;
+
+ // if the corner is negligible, then we have less than full rank, and we can finish early
+ if(ei_isMuchSmallerThan(biggestColSqNormInCorner, biggestColSqNorm, m_precision))
+ {
+ m_rank = k;
+ for(int i = k; i < size; i++)
+ {
+ cols_transpositions.coeffRef(i) = i;
+ m_hCoeffs.coeffRef(i) = Scalar(0);
+ }
+ break;
+ }
+
+ cols_transpositions.coeffRef(k) = biggest_col_in_corner;
+ if(k != biggest_col_in_corner) {
+ m_qr.col(k).swap(m_qr.col(biggest_col_in_corner));
+ ++number_of_transpositions;
+ }
+
+ RealScalar beta;
+ m_qr.col(k).end(rows-k).makeHouseholderInPlace(&m_hCoeffs.coeffRef(k), &beta);
+ m_qr.coeffRef(k,k) = beta;
+
+ m_qr.corner(BottomRight, rows-k, cols-k-1)
+ .applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), m_hCoeffs.coeffRef(k), &temp.coeffRef(k+1));
+
+ colSqNorms.end(cols-k-1) -= m_qr.row(k).end(cols-k-1).cwise().abs2();
+ }
+
+ for(int k = 0; k < matrix.cols(); ++k) m_cols_permutation.coeffRef(k) = k;
+ for(int k = 0; k < size; ++k)
+ std::swap(m_cols_permutation.coeffRef(k), m_cols_permutation.coeffRef(cols_transpositions.coeff(k)));
+
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
+ m_isInitialized = true;
+
+ return *this;
+}
+
+template<typename MatrixType>
+template<typename OtherDerived, typename ResultType>
+void ColPivotingHouseholderQR<MatrixType>::solve(
+ const MatrixBase<OtherDerived>& b,
+ ResultType *result
+) const
+{
+ ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
+ const int rows = m_qr.rows();
+ const int cols = b.cols();
+ ei_assert(b.rows() == rows);
+
+ typename OtherDerived::PlainMatrixType c(b);
+
+ Matrix<Scalar,1,MatrixType::ColsAtCompileTime> temp(cols);
+ for (int k = 0; k < m_rank; ++k)
+ {
+ int remainingSize = rows-k;
+ c.corner(BottomRight, remainingSize, cols)
+ .applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
+ }
+
+ m_qr.corner(TopLeft, m_rank, m_rank)
+ .template triangularView<UpperTriangular>()
+ .solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
+
+ result->resize(m_qr.cols(), b.cols());
+ for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
+ for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
+}
+
+/** \returns the matrix Q */
+template<typename MatrixType>
+MatrixType ColPivotingHouseholderQR<MatrixType>::matrixQ() const
+{
+ ei_assert(m_isInitialized && "ColPivotingHouseholderQR is not initialized.");
+ // compute the product H'_0 H'_1 ... H'_n-1,
+ // where H_k is the k-th Householder transformation I - h_k v_k v_k'
+ // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
+ int rows = m_qr.rows();
+ int cols = m_qr.cols();
+ int size = std::min(rows,cols);
+ MatrixType res = MatrixType::Identity(rows, rows);
+ Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
+ for (int k = size-1; k >= 0; k--)
+ {
+ res.block(k, k, rows-k, rows-k)
+ .applyHouseholderOnTheLeft(m_qr.col(k).end(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
+ }
+ return res;
+}
+
+#endif // EIGEN_HIDE_HEAVY_CODE
+
+/** \return the column-pivoting Householder QR decomposition of \c *this.
+ *
+ * \sa class ColPivotingHouseholderQR
+ */
+template<typename Derived>
+const ColPivotingHouseholderQR<typename MatrixBase<Derived>::PlainMatrixType>
+MatrixBase<Derived>::colPivotingHouseholderQr() const
+{
+ return ColPivotingHouseholderQR<PlainMatrixType>(eval());
+}
+
+
+#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H