aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Eigenvalues')
-rw-r--r--Eigen/src/Eigenvalues/CMakeLists.txt6
-rw-r--r--Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h (renamed from Eigen/src/Eigenvalues/ComplexSchur_MKL.h)34
-rw-r--r--Eigen/src/Eigenvalues/EigenSolver.h36
-rw-r--r--Eigen/src/Eigenvalues/GeneralizedEigenSolver.h193
-rw-r--r--Eigen/src/Eigenvalues/RealQZ.h32
-rw-r--r--Eigen/src/Eigenvalues/RealSchur.h12
-rw-r--r--Eigen/src/Eigenvalues/RealSchur_LAPACKE.h (renamed from Eigen/src/Eigenvalues/RealSchur_MKL.h)34
-rw-r--r--Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h40
-rw-r--r--Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h (renamed from Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h)36
-rw-r--r--Eigen/src/Eigenvalues/Tridiagonalization.h4
10 files changed, 254 insertions, 173 deletions
diff --git a/Eigen/src/Eigenvalues/CMakeLists.txt b/Eigen/src/Eigenvalues/CMakeLists.txt
deleted file mode 100644
index 193e02685..000000000
--- a/Eigen/src/Eigenvalues/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_EIGENVALUES_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_EIGENVALUES_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Eigenvalues COMPONENT Devel
- )
diff --git a/Eigen/src/Eigenvalues/ComplexSchur_MKL.h b/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h
index e20c3725b..4980a3ede 100644
--- a/Eigen/src/Eigenvalues/ComplexSchur_MKL.h
+++ b/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h
@@ -25,21 +25,19 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
+ * Content : Eigen bindings to LAPACKe
* Complex Schur needed to complex unsymmetrical eigenvalues/eigenvectors.
********************************************************************************
*/
-#ifndef EIGEN_COMPLEX_SCHUR_MKL_H
-#define EIGEN_COMPLEX_SCHUR_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
+#ifndef EIGEN_COMPLEX_SCHUR_LAPACKE_H
+#define EIGEN_COMPLEX_SCHUR_LAPACKE_H
namespace Eigen {
-/** \internal Specialization for the data types supported by MKL */
+/** \internal Specialization for the data types supported by LAPACKe */
-#define EIGEN_MKL_SCHUR_COMPLEX(EIGTYPE, MKLTYPE, MKLPREFIX, MKLPREFIX_U, EIGCOLROW, MKLCOLROW) \
+#define EIGEN_LAPACKE_SCHUR_COMPLEX(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \
template<> template<typename InputType> inline \
ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, bool computeU) \
@@ -60,18 +58,18 @@ ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Eigen
m_matUisUptodate = computeU; \
return *this; \
} \
- lapack_int n = matrix.cols(), sdim, info; \
- lapack_int matrix_order = MKLCOLROW; \
+ lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), sdim, info; \
+ lapack_int matrix_order = LAPACKE_COLROW; \
char jobvs, sort='N'; \
- LAPACK_##MKLPREFIX_U##_SELECT1 select = 0; \
+ LAPACK_##LAPACKE_PREFIX_U##_SELECT1 select = 0; \
jobvs = (computeU) ? 'V' : 'N'; \
m_matU.resize(n, n); \
- lapack_int ldvs = m_matU.outerStride(); \
+ lapack_int ldvs = internal::convert_index<lapack_int>(m_matU.outerStride()); \
m_matT = matrix; \
- lapack_int lda = m_matT.outerStride(); \
+ lapack_int lda = internal::convert_index<lapack_int>(m_matT.outerStride()); \
Matrix<EIGTYPE, Dynamic, Dynamic> w; \
w.resize(n, 1);\
- info = LAPACKE_##MKLPREFIX##gees( matrix_order, jobvs, sort, select, n, (MKLTYPE*)m_matT.data(), lda, &sdim, (MKLTYPE*)w.data(), (MKLTYPE*)m_matU.data(), ldvs ); \
+ info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)w.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \
if(info == 0) \
m_info = Success; \
else \
@@ -83,11 +81,11 @@ ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Eigen
\
}
-EIGEN_MKL_SCHUR_COMPLEX(dcomplex, MKL_Complex16, z, Z, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SCHUR_COMPLEX(scomplex, MKL_Complex8, c, C, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SCHUR_COMPLEX(dcomplex, MKL_Complex16, z, Z, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_SCHUR_COMPLEX(scomplex, MKL_Complex8, c, C, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, RowMajor, LAPACK_ROW_MAJOR)
} // end namespace Eigen
-#endif // EIGEN_COMPLEX_SCHUR_MKL_H
+#endif // EIGEN_COMPLEX_SCHUR_LAPACKE_H
diff --git a/Eigen/src/Eigenvalues/EigenSolver.h b/Eigen/src/Eigenvalues/EigenSolver.h
index 532ca7d63..f205b185d 100644
--- a/Eigen/src/Eigenvalues/EigenSolver.h
+++ b/Eigen/src/Eigenvalues/EigenSolver.h
@@ -324,11 +324,12 @@ template<typename MatrixType>
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
{
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
Index n = m_eivalues.rows();
MatrixType matD = MatrixType::Zero(n,n);
for (Index i=0; i<n; ++i)
{
- if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i))))
+ if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
else
{
@@ -345,11 +346,12 @@ typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eige
{
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
Index n = m_eivec.cols();
EigenvectorsType matV(n,n);
for (Index j=0; j<n; ++j)
{
- if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j))) || j+1==n)
+ if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n)
{
// we have a real eigen value
matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
@@ -451,26 +453,6 @@ EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool comput
return *this;
}
-// Complex scalar division.
-template<typename Scalar>
-std::complex<Scalar> cdiv(const Scalar& xr, const Scalar& xi, const Scalar& yr, const Scalar& yi)
-{
- using std::abs;
- Scalar r,d;
- if (abs(yr) > abs(yi))
- {
- r = yi/yr;
- d = yr + r*yi;
- return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
- }
- else
- {
- r = yr/yi;
- d = yi + r*yr;
- return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
- }
-}
-
template<typename MatrixType>
void EigenSolver<MatrixType>::doComputeEigenvectors()
@@ -503,7 +485,7 @@ void EigenSolver<MatrixType>::doComputeEigenvectors()
Scalar lastr(0), lastw(0);
Index l = n;
- m_matT.coeffRef(n,n) = 1.0;
+ m_matT.coeffRef(n,n) = Scalar(1);
for (Index i = n-1; i >= 0; i--)
{
Scalar w = m_matT.coeff(i,i) - p;
@@ -557,7 +539,7 @@ void EigenSolver<MatrixType>::doComputeEigenvectors()
}
else
{
- std::complex<Scalar> cc = cdiv<Scalar>(Scalar(0),-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q);
+ ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q);
m_matT.coeffRef(n-1,n-1) = numext::real(cc);
m_matT.coeffRef(n-1,n) = numext::imag(cc);
}
@@ -580,7 +562,7 @@ void EigenSolver<MatrixType>::doComputeEigenvectors()
l = i;
if (m_eivalues.coeff(i).imag() == RealScalar(0))
{
- std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
+ ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q);
m_matT.coeffRef(i,n-1) = numext::real(cc);
m_matT.coeffRef(i,n) = numext::imag(cc);
}
@@ -594,7 +576,7 @@ void EigenSolver<MatrixType>::doComputeEigenvectors()
if ((vr == Scalar(0)) && (vi == Scalar(0)))
vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
- std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
+ ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi);
m_matT.coeffRef(i,n-1) = numext::real(cc);
m_matT.coeffRef(i,n) = numext::imag(cc);
if (abs(x) > (abs(lastw) + abs(q)))
@@ -604,7 +586,7 @@ void EigenSolver<MatrixType>::doComputeEigenvectors()
}
else
{
- cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q);
+ cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q);
m_matT.coeffRef(i+1,n-1) = numext::real(cc);
m_matT.coeffRef(i+1,n) = numext::imag(cc);
}
diff --git a/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
index a9d6790d5..36a91dffc 100644
--- a/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
+++ b/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
@@ -1,8 +1,9 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
+// Copyright (C) 2016 Tobias Wood <tobias@spinicist.org.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -89,7 +90,7 @@ template<typename _MatrixType> class GeneralizedEigenSolver
*/
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
- /** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
+ /** \brief Type for vector of complex scalar values eigenvalues as returned by alphas().
*
* This is a column vector with entries of type #ComplexScalar.
* The length of the vector is the size of #MatrixType.
@@ -114,7 +115,14 @@ template<typename _MatrixType> class GeneralizedEigenSolver
*
* \sa compute() for an example.
*/
- GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
+ GeneralizedEigenSolver()
+ : m_eivec(),
+ m_alphas(),
+ m_betas(),
+ m_valuesOkay(false),
+ m_vectorsOkay(false),
+ m_realQZ()
+ {}
/** \brief Default constructor with memory preallocation
*
@@ -126,10 +134,9 @@ template<typename _MatrixType> class GeneralizedEigenSolver
: m_eivec(size, size),
m_alphas(size),
m_betas(size),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
+ m_valuesOkay(false),
+ m_vectorsOkay(false),
m_realQZ(size),
- m_matS(size, size),
m_tmp(size)
{}
@@ -149,10 +156,9 @@ template<typename _MatrixType> class GeneralizedEigenSolver
: m_eivec(A.rows(), A.cols()),
m_alphas(A.cols()),
m_betas(A.cols()),
- m_isInitialized(false),
- m_eigenvectorsOk(false),
+ m_valuesOkay(false),
+ m_vectorsOkay(false),
m_realQZ(A.cols()),
- m_matS(A.rows(), A.cols()),
m_tmp(A.cols())
{
compute(A, B, computeEigenvectors);
@@ -160,22 +166,20 @@ template<typename _MatrixType> class GeneralizedEigenSolver
/* \brief Returns the computed generalized eigenvectors.
*
- * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
+ * \returns %Matrix whose columns are the (possibly complex) right eigenvectors.
+ * i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues.
*
* \pre Either the constructor
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
* compute(const MatrixType&, const MatrixType& bool) has been called before, and
* \p computeEigenvectors was set to true (the default).
*
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
- * eigenvectors are normalized to have (Euclidean) norm equal to one. The
- * matrix returned by this function is the matrix \f$ V \f$ in the
- * generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
- *
* \sa eigenvalues()
*/
-// EigenvectorsType eigenvectors() const;
+ EigenvectorsType eigenvectors() const {
+ eigen_assert(m_vectorsOkay && "Eigenvectors for GeneralizedEigenSolver were not calculated.");
+ return m_eivec;
+ }
/** \brief Returns an expression of the computed generalized eigenvalues.
*
@@ -197,7 +201,7 @@ template<typename _MatrixType> class GeneralizedEigenSolver
*/
EigenvalueType eigenvalues() const
{
- eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+ eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
return EigenvalueType(m_alphas,m_betas);
}
@@ -208,7 +212,7 @@ template<typename _MatrixType> class GeneralizedEigenSolver
* \sa betas(), eigenvalues() */
ComplexVectorType alphas() const
{
- eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+ eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
return m_alphas;
}
@@ -219,7 +223,7 @@ template<typename _MatrixType> class GeneralizedEigenSolver
* \sa alphas(), eigenvalues() */
VectorType betas() const
{
- eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
+ eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
return m_betas;
}
@@ -250,7 +254,7 @@ template<typename _MatrixType> class GeneralizedEigenSolver
ComputationInfo info() const
{
- eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ eigen_assert(m_valuesOkay && "EigenSolver is not initialized.");
return m_realQZ.info();
}
@@ -270,29 +274,14 @@ template<typename _MatrixType> class GeneralizedEigenSolver
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
}
- MatrixType m_eivec;
+ EigenvectorsType m_eivec;
ComplexVectorType m_alphas;
VectorType m_betas;
- bool m_isInitialized;
- bool m_eigenvectorsOk;
+ bool m_valuesOkay, m_vectorsOkay;
RealQZ<MatrixType> m_realQZ;
- MatrixType m_matS;
-
- typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
- ColumnVectorType m_tmp;
+ ComplexVectorType m_tmp;
};
-//template<typename MatrixType>
-//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
-//{
-// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
-// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
-// Index n = m_eivec.cols();
-// EigenvectorsType matV(n,n);
-// // TODO
-// return matV;
-//}
-
template<typename MatrixType>
GeneralizedEigenSolver<MatrixType>&
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
@@ -302,46 +291,126 @@ GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixTyp
using std::sqrt;
using std::abs;
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
-
+ Index size = A.cols();
+ m_valuesOkay = false;
+ m_vectorsOkay = false;
// Reduce to generalized real Schur form:
// A = Q S Z and B = Q T Z
m_realQZ.compute(A, B, computeEigenvectors);
-
if (m_realQZ.info() == Success)
{
- m_matS = m_realQZ.matrixS();
+ // Resize storage
+ m_alphas.resize(size);
+ m_betas.resize(size);
if (computeEigenvectors)
- m_eivec = m_realQZ.matrixZ().transpose();
-
- // Compute eigenvalues from matS
- m_alphas.resize(A.cols());
- m_betas.resize(A.cols());
+ {
+ m_eivec.resize(size,size);
+ m_tmp.resize(size);
+ }
+
+ // Aliases:
+ Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size);
+ ComplexVectorType &cv = m_tmp;
+ const MatrixType &mZ = m_realQZ.matrixZ();
+ const MatrixType &mS = m_realQZ.matrixS();
+ const MatrixType &mT = m_realQZ.matrixT();
+
Index i = 0;
- while (i < A.cols())
+ while (i < size)
{
- if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
+ if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0))
{
- m_alphas.coeffRef(i) = m_matS.coeff(i, i);
- m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
+ // Real eigenvalue
+ m_alphas.coeffRef(i) = mS.diagonal().coeff(i);
+ m_betas.coeffRef(i) = mT.diagonal().coeff(i);
+ if (computeEigenvectors)
+ {
+ v.setConstant(Scalar(0.0));
+ v.coeffRef(i) = Scalar(1.0);
+ // For singular eigenvalues do nothing more
+ if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits<RealScalar>::min)())
+ {
+ // Non-singular eigenvalue
+ const Scalar alpha = real(m_alphas.coeffRef(i));
+ const Scalar beta = m_betas.coeffRef(i);
+ for (Index j = i-1; j >= 0; j--)
+ {
+ const Index st = j+1;
+ const Index sz = i-j;
+ if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
+ {
+ // 2x2 block
+ Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) );
+ Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
+ v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
+ j--;
+ }
+ else
+ {
+ v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j));
+ }
+ }
+ }
+ m_eivec.col(i).real().noalias() = mZ.transpose() * v;
+ m_eivec.col(i).real().normalize();
+ m_eivec.col(i).imag().setConstant(0);
+ }
++i;
}
else
{
- Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
- Scalar z = sqrt(abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
- m_alphas.coeffRef(i) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
- m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
-
- m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
- m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
+ // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T
+ // Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00):
+
+ // T = [a 0]
+ // [0 b]
+ RealScalar a = mT.diagonal().coeff(i),
+ b = mT.diagonal().coeff(i+1);
+ const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b;
+
+ // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug.
+ Matrix<RealScalar,2,2> S2 = mS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal();
+
+ Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1));
+ Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1)));
+ const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z);
+ m_alphas.coeffRef(i) = conj(alpha);
+ m_alphas.coeffRef(i+1) = alpha;
+
+ if (computeEigenvectors) {
+ // Compute eigenvector in position (i+1) and then position (i) is just the conjugate
+ cv.setZero();
+ cv.coeffRef(i+1) = Scalar(1.0);
+ // here, the "static_cast" workaound expression template issues.
+ cv.coeffRef(i) = -(static_cast<Scalar>(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1))
+ / (static_cast<Scalar>(beta*mS.coeffRef(i,i)) - alpha*mT.coeffRef(i,i));
+ for (Index j = i-1; j >= 0; j--)
+ {
+ const Index st = j+1;
+ const Index sz = i+1-j;
+ if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
+ {
+ // 2x2 block
+ Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) );
+ Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
+ cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
+ j--;
+ } else {
+ cv.coeffRef(j) = cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum()
+ / (alpha*mT.coeffRef(j,j) - static_cast<Scalar>(beta*mS.coeffRef(j,j)));
+ }
+ }
+ m_eivec.col(i+1).noalias() = (mZ.transpose() * cv);
+ m_eivec.col(i+1).normalize();
+ m_eivec.col(i) = m_eivec.col(i+1).conjugate();
+ }
i += 2;
}
}
- }
-
- m_isInitialized = true;
- m_eigenvectorsOk = false;//computeEigenvectors;
+ m_valuesOkay = true;
+ m_vectorsOkay = computeEigenvectors;
+ }
return *this;
}
diff --git a/Eigen/src/Eigenvalues/RealQZ.h b/Eigen/src/Eigenvalues/RealQZ.h
index a62071d42..b3a910dd9 100644
--- a/Eigen/src/Eigenvalues/RealQZ.h
+++ b/Eigen/src/Eigenvalues/RealQZ.h
@@ -552,7 +552,6 @@ namespace Eigen {
m_T.coeffRef(l,l-1) = Scalar(0.0);
}
-
template<typename MatrixType>
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
{
@@ -616,6 +615,37 @@ namespace Eigen {
}
// check if we converged before reaching iterations limit
m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
+
+ // For each non triangular 2x2 diagonal block of S,
+ // reduce the respective 2x2 diagonal block of T to positive diagonal form using 2x2 SVD.
+ // This step is not mandatory for QZ, but it does help further extraction of eigenvalues/eigenvectors,
+ // and is in par with Lapack/Matlab QZ.
+ if(m_info==Success)
+ {
+ for(Index i=0; i<dim-1; ++i)
+ {
+ if(m_S.coeff(i+1, i) != Scalar(0))
+ {
+ JacobiRotation<Scalar> j_left, j_right;
+ internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right);
+
+ // Apply resulting Jacobi rotations
+ m_S.applyOnTheLeft(i,i+1,j_left);
+ m_S.applyOnTheRight(i,i+1,j_right);
+ m_T.applyOnTheLeft(i,i+1,j_left);
+ m_T.applyOnTheRight(i,i+1,j_right);
+ m_T(i+1,i) = m_T(i,i+1) = Scalar(0);
+
+ if(m_computeQZ) {
+ m_Q.applyOnTheRight(i,i+1,j_left.transpose());
+ m_Z.applyOnTheLeft(i,i+1,j_right.transpose());
+ }
+
+ i++;
+ }
+ }
+ }
+
return *this;
} // end compute
diff --git a/Eigen/src/Eigenvalues/RealSchur.h b/Eigen/src/Eigenvalues/RealSchur.h
index f4ded69b6..d6a339f07 100644
--- a/Eigen/src/Eigenvalues/RealSchur.h
+++ b/Eigen/src/Eigenvalues/RealSchur.h
@@ -253,19 +253,25 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>
if (maxIters == -1)
maxIters = m_maxIterationsPerRow * matrix.rows();
+ Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
+
// Step 1. Reduce to Hessenberg form
- m_hess.compute(matrix.derived());
+ m_hess.compute(matrix.derived()/scale);
// Step 2. Reduce to real Schur form
computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
+
+ m_matT *= scale;
return *this;
}
template<typename MatrixType>
template<typename HessMatrixType, typename OrthMatrixType>
RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
-{
- m_matT = matrixH;
+{
+ using std::abs;
+
+ m_matT = matrixH;
if(computeU)
m_matU = matrixQ;
diff --git a/Eigen/src/Eigenvalues/RealSchur_MKL.h b/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h
index e80926400..2c2251715 100644
--- a/Eigen/src/Eigenvalues/RealSchur_MKL.h
+++ b/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h
@@ -25,39 +25,37 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
+ * Content : Eigen bindings to LAPACKe
* Real Schur needed to real unsymmetrical eigenvalues/eigenvectors.
********************************************************************************
*/
-#ifndef EIGEN_REAL_SCHUR_MKL_H
-#define EIGEN_REAL_SCHUR_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
+#ifndef EIGEN_REAL_SCHUR_LAPACKE_H
+#define EIGEN_REAL_SCHUR_LAPACKE_H
namespace Eigen {
-/** \internal Specialization for the data types supported by MKL */
+/** \internal Specialization for the data types supported by LAPACKe */
-#define EIGEN_MKL_SCHUR_REAL(EIGTYPE, MKLTYPE, MKLPREFIX, MKLPREFIX_U, EIGCOLROW, MKLCOLROW) \
+#define EIGEN_LAPACKE_SCHUR_REAL(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \
template<> template<typename InputType> inline \
RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, bool computeU) \
{ \
eigen_assert(matrix.cols() == matrix.rows()); \
\
- lapack_int n = matrix.cols(), sdim, info; \
- lapack_int matrix_order = MKLCOLROW; \
+ lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), sdim, info; \
+ lapack_int matrix_order = LAPACKE_COLROW; \
char jobvs, sort='N'; \
- LAPACK_##MKLPREFIX_U##_SELECT2 select = 0; \
+ LAPACK_##LAPACKE_PREFIX_U##_SELECT2 select = 0; \
jobvs = (computeU) ? 'V' : 'N'; \
m_matU.resize(n, n); \
- lapack_int ldvs = m_matU.outerStride(); \
+ lapack_int ldvs = internal::convert_index<lapack_int>(m_matU.outerStride()); \
m_matT = matrix; \
- lapack_int lda = m_matT.outerStride(); \
+ lapack_int lda = internal::convert_index<lapack_int>(m_matT.outerStride()); \
Matrix<EIGTYPE, Dynamic, Dynamic> wr, wi; \
wr.resize(n, 1); wi.resize(n, 1); \
- info = LAPACKE_##MKLPREFIX##gees( matrix_order, jobvs, sort, select, n, (MKLTYPE*)m_matT.data(), lda, &sdim, (MKLTYPE*)wr.data(), (MKLTYPE*)wi.data(), (MKLTYPE*)m_matU.data(), ldvs ); \
+ info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)wr.data(), (LAPACKE_TYPE*)wi.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \
if(info == 0) \
m_info = Success; \
else \
@@ -69,11 +67,11 @@ RealSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBas
\
}
-EIGEN_MKL_SCHUR_REAL(double, double, d, D, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SCHUR_REAL(float, float, s, S, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_SCHUR_REAL(double, double, d, D, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_SCHUR_REAL(float, float, s, S, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, RowMajor, LAPACK_ROW_MAJOR)
} // end namespace Eigen
-#endif // EIGEN_REAL_SCHUR_MKL_H
+#endif // EIGEN_REAL_SCHUR_LAPACKE_H
diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
index 469ea5e4e..a9f56c4f5 100644
--- a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
+++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
@@ -414,7 +414,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
if(n==1)
{
- m_eivalues.coeffRef(0,0) = numext::real(matrix(0,0));
+ m_eivalues.coeffRef(0,0) = numext::real(matrix.diagonal()[0]);
if(computeEigenvectors)
m_eivec.setOnes(n,n);
m_info = Success;
@@ -458,7 +458,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
{
m_eivec.setIdentity(diag.size(), diag.size());
}
- m_info = computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
+ m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
m_isInitialized = true;
m_eigenvectorsOk = computeEigenvectors;
@@ -492,15 +492,16 @@ ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag
typedef typename DiagType::RealScalar RealScalar;
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
+ const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
while (end>0)
{
for (Index i = start; i<end; ++i)
- if (internal::isMuchSmallerThan(abs(subdiag[i]),(abs(diag[i])+abs(diag[i+1]))) || abs(subdiag[i]) <= considerAsZero)
+ if (internal::isMuchSmallerThan(abs(subdiag[i]),(abs(diag[i])+abs(diag[i+1])),precision) || abs(subdiag[i]) <= considerAsZero)
subdiag[i] = 0;
// find the largest unreduced block
- while (end>0 && subdiag[end-1]==0)
+ while (end>0 && subdiag[end-1]==RealScalar(0))
{
end--;
}
@@ -568,8 +569,8 @@ template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3
EIGEN_USING_STD_MATH(atan2)
EIGEN_USING_STD_MATH(cos)
EIGEN_USING_STD_MATH(sin)
- const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0);
- const Scalar s_sqrt3 = sqrt(Scalar(3.0));
+ const Scalar s_inv3 = Scalar(1)/Scalar(3);
+ const Scalar s_sqrt3 = sqrt(Scalar(3));
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
// eigenvalues are the roots to this equation, all guaranteed to be
@@ -739,14 +740,18 @@ struct direct_selfadjoint_eigenvalues<SolverType,2,false>
EigenvectorsType& eivecs = solver.m_eivec;
VectorType& eivals = solver.m_eivalues;
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
- Scalar scale = mat.cwiseAbs().maxCoeff();
- scale = numext::maxi(scale,Scalar(1));
- MatrixType scaledMat = mat / scale;
-
+ // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
+ Scalar shift = mat.trace() / Scalar(2);
+ MatrixType scaledMat = mat;
+ scaledMat.coeffRef(0,1) = mat.coeff(1,0);
+ scaledMat.diagonal().array() -= shift;
+ Scalar scale = scaledMat.cwiseAbs().maxCoeff();
+ if(scale > Scalar(0))
+ scaledMat /= scale;
+
// Compute the eigenvalues
computeRoots(scaledMat,eivals);
-
+
// compute the eigen vectors
if(computeEigenvectors)
{
@@ -774,10 +779,11 @@ struct direct_selfadjoint_eigenvalues<SolverType,2,false>
eivecs.col(0) << eivecs.col(1).unitOrthogonal();
}
}
-
+
// Rescale back to the original size.
eivals *= scale;
-
+ eivals.array() += shift;
+
solver.m_info = Success;
solver.m_isInitialized = true;
solver.m_eigenvectorsOk = computeEigenvectors;
@@ -809,14 +815,14 @@ static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index sta
// RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
// This explain the following, somewhat more complicated, version:
RealScalar mu = diag[end];
- if(td==0)
+ if(td==RealScalar(0))
mu -= abs(e);
else
{
RealScalar e2 = numext::abs2(subdiag[end-1]);
RealScalar h = numext::hypot(td,e);
- if(e2==0) mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h);
- else mu -= e2 / (td + (td>0 ? h : -h));
+ if(e2==RealScalar(0)) mu -= (e / (td + (td>RealScalar(0) ? RealScalar(1) : RealScalar(-1)))) * (e / h);
+ else mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
}
RealScalar x = diag[start] - mu;
diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h
index 3499dc78a..3891cf883 100644
--- a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_MKL.h
+++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h
@@ -25,21 +25,19 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
+ * Content : Eigen bindings to LAPACKe
* Self-adjoint eigenvalues/eigenvectors.
********************************************************************************
*/
-#ifndef EIGEN_SAEIGENSOLVER_MKL_H
-#define EIGEN_SAEIGENSOLVER_MKL_H
-
-#include "Eigen/src/Core/util/MKL_support.h"
+#ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H
+#define EIGEN_SAEIGENSOLVER_LAPACKE_H
namespace Eigen {
-/** \internal Specialization for the data types supported by MKL */
+/** \internal Specialization for the data types supported by LAPACKe */
-#define EIGEN_MKL_EIG_SELFADJ(EIGTYPE, MKLTYPE, MKLRTYPE, MKLNAME, EIGCOLROW, MKLCOLROW ) \
+#define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW, LAPACKE_COLROW ) \
template<> template<typename InputType> inline \
SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const EigenBase<InputType>& matrix, int options) \
@@ -49,7 +47,7 @@ SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(c
&& (options&EigVecMask)!=EigVecMask \
&& "invalid option parameter"); \
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \
- lapack_int n = matrix.cols(), lda, matrix_order, info; \
+ lapack_int n = internal::convert_index<lapack_int>(matrix.cols()), lda, matrix_order, info; \
m_eivalues.resize(n,1); \
m_subdiag.resize(n-1); \
m_eivec = matrix; \
@@ -64,12 +62,12 @@ SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(c
return *this; \
} \
\
- lda = m_eivec.outerStride(); \
- matrix_order=MKLCOLROW; \
+ lda = internal::convert_index<lapack_int>(m_eivec.outerStride()); \
+ matrix_order=LAPACKE_COLROW; \
char jobz, uplo='L'/*, range='A'*/; \
jobz = computeEigenvectors ? 'V' : 'N'; \
\
- info = LAPACKE_##MKLNAME( matrix_order, jobz, uplo, n, (MKLTYPE*)m_eivec.data(), lda, (MKLRTYPE*)m_eivalues.data() ); \
+ info = LAPACKE_##LAPACKE_NAME( matrix_order, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \
m_info = (info==0) ? Success : NoConvergence; \
m_isInitialized = true; \
m_eigenvectorsOk = computeEigenvectors; \
@@ -77,15 +75,15 @@ SelfAdjointEigenSolver<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(c
}
-EIGEN_MKL_EIG_SELFADJ(double, double, double, dsyev, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(float, float, float, ssyev, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(dcomplex, MKL_Complex16, double, zheev, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(scomplex, MKL_Complex8, float, cheev, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev, ColMajor, LAPACK_COL_MAJOR)
+EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(double, double, double, dsyev, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(float, float, float, ssyev, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(dcomplex, MKL_Complex16, double, zheev, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_MKL_EIG_SELFADJ(scomplex, MKL_Complex8, float, cheev, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev, RowMajor, LAPACK_ROW_MAJOR)
+EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev, RowMajor, LAPACK_ROW_MAJOR)
} // end namespace Eigen
diff --git a/Eigen/src/Eigenvalues/Tridiagonalization.h b/Eigen/src/Eigenvalues/Tridiagonalization.h
index 2030b5be1..1d102c17b 100644
--- a/Eigen/src/Eigenvalues/Tridiagonalization.h
+++ b/Eigen/src/Eigenvalues/Tridiagonalization.h
@@ -367,10 +367,10 @@ void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
* (conj(h) * matA.col(i).tail(remainingSize)));
- hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
+ hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
- .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1);
+ .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
matA.col(i).coeffRef(i+1) = beta;
hCoeffs.coeffRef(i) = h;