aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/SpecialFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/SpecialFunctions.h')
-rw-r--r--Eigen/src/Core/SpecialFunctions.h1050
1 files changed, 1050 insertions, 0 deletions
diff --git a/Eigen/src/Core/SpecialFunctions.h b/Eigen/src/Core/SpecialFunctions.h
new file mode 100644
index 000000000..adb055b15
--- /dev/null
+++ b/Eigen/src/Core/SpecialFunctions.h
@@ -0,0 +1,1050 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SPECIAL_FUNCTIONS_H
+#define EIGEN_SPECIAL_FUNCTIONS_H
+
+namespace Eigen {
+namespace internal {
+
+// Parts of this code are based on the Cephes Math Library.
+//
+// Cephes Math Library Release 2.8: June, 2000
+// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
+//
+// Permission has been kindly provided by the original author
+// to incorporate the Cephes software into the Eigen codebase:
+//
+// From: Stephen Moshier
+// To: Eugene Brevdo
+// Subject: Re: Permission to wrap several cephes functions in Eigen
+//
+// Hello Eugene,
+//
+// Thank you for writing.
+//
+// If your licensing is similar to BSD, the formal way that has been
+// handled is simply to add a statement to the effect that you are incorporating
+// the Cephes software by permission of the author.
+//
+// Good luck with your project,
+// Steve
+
+namespace cephes {
+
+/* polevl (modified for Eigen)
+ *
+ * Evaluate polynomial
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * int N;
+ * Scalar x, y, coef[N+1];
+ *
+ * y = polevl<decltype(x), N>( x, coef);
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Evaluates polynomial of degree N:
+ *
+ * 2 N
+ * y = C + C x + C x +...+ C x
+ * 0 1 2 N
+ *
+ * Coefficients are stored in reverse order:
+ *
+ * coef[0] = C , ..., coef[N] = C .
+ * N 0
+ *
+ * The function p1evl() assumes that coef[N] = 1.0 and is
+ * omitted from the array. Its calling arguments are
+ * otherwise the same as polevl().
+ *
+ *
+ * The Eigen implementation is templatized. For best speed, store
+ * coef as a const array (constexpr), e.g.
+ *
+ * const double coef[] = {1.0, 2.0, 3.0, ...};
+ *
+ */
+template <typename Scalar, int N>
+struct polevl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar x, const Scalar coef[]) {
+ EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
+
+ return polevl<Scalar, N - 1>::run(x, coef) * x + coef[N];
+ }
+};
+
+template <typename Scalar>
+struct polevl<Scalar, 0> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar, const Scalar coef[]) {
+ return coef[0];
+ }
+};
+
+} // end namespace cephes
+
+/****************************************************************************
+ * Implementation of lgamma *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct lgamma_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+template <typename Scalar>
+struct lgamma_retval {
+ typedef Scalar type;
+};
+
+#ifdef EIGEN_HAS_C99_MATH
+template <>
+struct lgamma_impl<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float run(float x) { return ::lgammaf(x); }
+};
+
+template <>
+struct lgamma_impl<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double run(double x) { return ::lgamma(x); }
+};
+#endif
+
+/****************************************************************************
+ * Implementation of digamma (psi) *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct digamma_retval {
+ typedef Scalar type;
+};
+
+#ifndef EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct digamma_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(Scalar x) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+#else
+
+/*
+ *
+ * Polynomial evaluation helper for the Psi (digamma) function.
+ *
+ * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
+ * input Scalar s, assuming s is above 10.0.
+ *
+ * If s is above a certain threshold for the given Scalar type, zero
+ * is returned. Otherwise the polynomial is evaluated with enough
+ * coefficients for results matching Scalar machine precision.
+ *
+ *
+ */
+template <typename Scalar>
+struct digamma_impl_maybe_poly {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+
+template <>
+struct digamma_impl_maybe_poly<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float run(const float s) {
+ const float A[] = {
+ -4.16666666666666666667E-3f,
+ 3.96825396825396825397E-3f,
+ -8.33333333333333333333E-3f,
+ 8.33333333333333333333E-2f
+ };
+
+ float z;
+ if (s < 1.0e8f) {
+ z = 1.0f / (s * s);
+ return z * cephes::polevl<float, 3>::run(z, A);
+ } else return 0.0f;
+ }
+};
+
+template <>
+struct digamma_impl_maybe_poly<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double run(const double s) {
+ const double A[] = {
+ 8.33333333333333333333E-2,
+ -2.10927960927960927961E-2,
+ 7.57575757575757575758E-3,
+ -4.16666666666666666667E-3,
+ 3.96825396825396825397E-3,
+ -8.33333333333333333333E-3,
+ 8.33333333333333333333E-2
+ };
+
+ double z;
+ if (s < 1.0e17) {
+ z = 1.0 / (s * s);
+ return z * cephes::polevl<double, 6>::run(z, A);
+ }
+ else return 0.0;
+ }
+};
+
+template <typename Scalar>
+struct digamma_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar x) {
+ /*
+ *
+ * Psi (digamma) function (modified for Eigen)
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double x, y, psi();
+ *
+ * y = psi( x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * d -
+ * psi(x) = -- ln | (x)
+ * dx
+ *
+ * is the logarithmic derivative of the gamma function.
+ * For integer x,
+ * n-1
+ * -
+ * psi(n) = -EUL + > 1/k.
+ * -
+ * k=1
+ *
+ * If x is negative, it is transformed to a positive argument by the
+ * reflection formula psi(1-x) = psi(x) + pi cot(pi x).
+ * For general positive x, the argument is made greater than 10
+ * using the recurrence psi(x+1) = psi(x) + 1/x.
+ * Then the following asymptotic expansion is applied:
+ *
+ * inf. B
+ * - 2k
+ * psi(x) = log(x) - 1/2x - > -------
+ * - 2k
+ * k=1 2k x
+ *
+ * where the B2k are Bernoulli numbers.
+ *
+ * ACCURACY (float):
+ * Relative error (except absolute when |psi| < 1):
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 30000 1.3e-15 1.4e-16
+ * IEEE -30,0 40000 1.5e-15 2.2e-16
+ *
+ * ACCURACY (double):
+ * Absolute error, relative when |psi| > 1 :
+ * arithmetic domain # trials peak rms
+ * IEEE -33,0 30000 8.2e-7 1.2e-7
+ * IEEE 0,33 100000 7.3e-7 7.7e-8
+ *
+ * ERROR MESSAGES:
+ * message condition value returned
+ * psi singularity x integer <=0 INFINITY
+ */
+
+ Scalar p, q, nz, s, w, y;
+ bool negative;
+
+ const Scalar maxnum = NumTraits<Scalar>::infinity();
+ const Scalar m_pi = EIGEN_PI;
+
+ negative = 0;
+ nz = 0.0;
+
+ const Scalar zero = 0.0;
+ const Scalar one = 1.0;
+ const Scalar half = 0.5;
+
+ if (x <= zero) {
+ negative = one;
+ q = x;
+ p = numext::floor(q);
+ if (p == q) {
+ return maxnum;
+ }
+ /* Remove the zeros of tan(m_pi x)
+ * by subtracting the nearest integer from x
+ */
+ nz = q - p;
+ if (nz != half) {
+ if (nz > half) {
+ p += one;
+ nz = q - p;
+ }
+ nz = m_pi / numext::tan(m_pi * nz);
+ }
+ else {
+ nz = zero;
+ }
+ x = one - x;
+ }
+
+ /* use the recurrence psi(x+1) = psi(x) + 1/x. */
+ s = x;
+ w = zero;
+ while (s < Scalar(10)) {
+ w += one / s;
+ s += one;
+ }
+
+ y = digamma_impl_maybe_poly<Scalar>::run(s);
+
+ y = numext::log(s) - (half / s) - y - w;
+
+ return (negative) ? y - nz : y;
+ }
+};
+
+#endif // EIGEN_HAS_C99_MATH
+
+/****************************************************************************
+ * Implementation of erf *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct erf_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+template <typename Scalar>
+struct erf_retval {
+ typedef Scalar type;
+};
+
+#ifdef EIGEN_HAS_C99_MATH
+template <>
+struct erf_impl<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float run(float x) { return ::erff(x); }
+};
+
+template <>
+struct erf_impl<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double run(double x) { return ::erf(x); }
+};
+#endif // EIGEN_HAS_C99_MATH
+
+/***************************************************************************
+* Implementation of erfc *
+****************************************************************************/
+
+template <typename Scalar>
+struct erfc_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+template <typename Scalar>
+struct erfc_retval {
+ typedef Scalar type;
+};
+
+#ifdef EIGEN_HAS_C99_MATH
+template <>
+struct erfc_impl<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float run(const float x) { return ::erfcf(x); }
+};
+
+template <>
+struct erfc_impl<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double run(const double x) { return ::erfc(x); }
+};
+#endif // EIGEN_HAS_C99_MATH
+
+/****************************************************************************
+ * Implementation of igammac (complemented incomplete gamma integral) *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct igammac_retval {
+ typedef Scalar type;
+};
+
+#ifndef EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct igammac_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+#else
+
+template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
+
+template <typename Scalar>
+struct igamma_helper {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
+};
+
+template <>
+struct igamma_helper<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float machep() {
+ return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
+ }
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE float big() {
+ // use epsneg (1.0 - epsneg == 1.0)
+ return 1.0 / (NumTraits<float>::epsilon() / 2);
+ }
+};
+
+template <>
+struct igamma_helper<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double machep() {
+ return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
+ }
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE double big() {
+ return 1.0 / NumTraits<double>::epsilon();
+ }
+};
+
+template <typename Scalar>
+struct igammac_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ /* igamc()
+ *
+ * Incomplete gamma integral (modified for Eigen)
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double a, x, y, igamc();
+ *
+ * y = igamc( a, x );
+ *
+ * DESCRIPTION:
+ *
+ * The function is defined by
+ *
+ *
+ * igamc(a,x) = 1 - igam(a,x)
+ *
+ * inf.
+ * -
+ * 1 | | -t a-1
+ * = ----- | e t dt.
+ * - | |
+ * | (a) -
+ * x
+ *
+ *
+ * In this implementation both arguments must be positive.
+ * The integral is evaluated by either a power series or
+ * continued fraction expansion, depending on the relative
+ * values of a and x.
+ *
+ * ACCURACY (float):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 30000 7.8e-6 5.9e-7
+ *
+ *
+ * ACCURACY (double):
+ *
+ * Tested at random a, x.
+ * a x Relative error:
+ * arithmetic domain domain # trials peak rms
+ * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
+ * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
+ *
+ */
+ /*
+ Cephes Math Library Release 2.2: June, 1992
+ Copyright 1985, 1987, 1992 by Stephen L. Moshier
+ Direct inquiries to 30 Frost Street, Cambridge, MA 02140
+ */
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar two = 2;
+ const Scalar machep = igamma_helper<Scalar>::machep();
+ const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
+ const Scalar big = igamma_helper<Scalar>::big();
+ const Scalar biginv = 1 / big;
+ const Scalar nan = NumTraits<Scalar>::quiet_NaN();
+ const Scalar inf = NumTraits<Scalar>::infinity();
+
+ Scalar ans, ax, c, yc, r, t, y, z;
+ Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
+
+ if ((x < zero) || ( a <= zero)) {
+ // domain error
+ return nan;
+ }
+
+ if ((x < one) || (x < a)) {
+ return (one - igamma_impl<Scalar>::run(a, x));
+ }
+
+ if (x == inf) return zero; // std::isinf crashes on CUDA
+
+ /* Compute x**a * exp(-x) / gamma(a) */
+ ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
+ if (ax < -maxlog) { // underflow
+ return zero;
+ }
+ ax = numext::exp(ax);
+
+ // continued fraction
+ y = one - a;
+ z = x + y + one;
+ c = zero;
+ pkm2 = one;
+ qkm2 = x;
+ pkm1 = x + one;
+ qkm1 = z * x;
+ ans = pkm1 / qkm1;
+
+ while (true) {
+ c += one;
+ y += one;
+ z += two;
+ yc = y * c;
+ pk = pkm1 * z - pkm2 * yc;
+ qk = qkm1 * z - qkm2 * yc;
+ if (qk != zero) {
+ r = pk / qk;
+ t = numext::abs((ans - r) / r);
+ ans = r;
+ } else {
+ t = one;
+ }
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+ if (numext::abs(pk) > big) {
+ pkm2 *= biginv;
+ pkm1 *= biginv;
+ qkm2 *= biginv;
+ qkm1 *= biginv;
+ }
+ if (t <= machep) break;
+ }
+
+ return (ans * ax);
+ }
+};
+
+#endif // EIGEN_HAS_C99_MATH
+
+/****************************************************************************
+ * Implementation of igamma (incomplete gamma integral) *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct igamma_retval {
+ typedef Scalar type;
+};
+
+#ifndef EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct igamma_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+#else
+
+template <typename Scalar>
+struct igamma_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ /* igam()
+ * Incomplete gamma integral
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double a, x, y, igam();
+ *
+ * y = igam( a, x );
+ *
+ * DESCRIPTION:
+ *
+ * The function is defined by
+ *
+ * x
+ * -
+ * 1 | | -t a-1
+ * igam(a,x) = ----- | e t dt.
+ * - | |
+ * | (a) -
+ * 0
+ *
+ *
+ * In this implementation both arguments must be positive.
+ * The integral is evaluated by either a power series or
+ * continued fraction expansion, depending on the relative
+ * values of a and x.
+ *
+ * ACCURACY (double):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 200000 3.6e-14 2.9e-15
+ * IEEE 0,100 300000 9.9e-14 1.5e-14
+ *
+ *
+ * ACCURACY (float):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 20000 7.8e-6 5.9e-7
+ *
+ */
+ /*
+ Cephes Math Library Release 2.2: June, 1992
+ Copyright 1985, 1987, 1992 by Stephen L. Moshier
+ Direct inquiries to 30 Frost Street, Cambridge, MA 02140
+ */
+
+
+ /* left tail of incomplete gamma function:
+ *
+ * inf. k
+ * a -x - x
+ * x e > ----------
+ * - -
+ * k=0 | (a+k+1)
+ *
+ */
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar machep = igamma_helper<Scalar>::machep();
+ const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
+ const Scalar nan = NumTraits<Scalar>::quiet_NaN();
+
+ double ans, ax, c, r;
+
+ if (x == zero) return zero;
+
+ if ((x < zero) || ( a <= zero)) { // domain error
+ return nan;
+ }
+
+ if ((x > one) && (x > a)) {
+ return (one - igammac_impl<Scalar>::run(a, x));
+ }
+
+ /* Compute x**a * exp(-x) / gamma(a) */
+ ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
+ if (ax < -maxlog) {
+ // underflow
+ return zero;
+ }
+ ax = numext::exp(ax);
+
+ /* power series */
+ r = a;
+ c = one;
+ ans = one;
+
+ while (true) {
+ r += one;
+ c *= x/r;
+ ans += c;
+ if (c/ans <= machep) break;
+ }
+
+ return (ans * ax / a);
+ }
+};
+
+#endif // EIGEN_HAS_C99_MATH
+
+/****************************************************************************
+ * Implementation of Riemann zeta function of two arguments *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct zeta_retval {
+ typedef Scalar type;
+};
+
+#ifndef EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct zeta_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(Scalar x, Scalar q) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+#else
+
+template <typename Scalar>
+struct zeta_impl_series {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+template <>
+struct zeta_impl_series<float> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) {
+ int i = 0;
+ while(i < 9)
+ {
+ i += 1;
+ a += 1.0f;
+ b = numext::pow( a, -x );
+ s += b;
+ if( numext::abs(b/s) < machep )
+ return true;
+ }
+
+ //Return whether we are done
+ return false;
+ }
+};
+
+template <>
+struct zeta_impl_series<double> {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) {
+ int i = 0;
+ while( (i < 9) || (a <= 9.0) )
+ {
+ i += 1;
+ a += 1.0;
+ b = numext::pow( a, -x );
+ s += b;
+ if( numext::abs(b/s) < machep )
+ return true;
+ }
+
+ //Return whether we are done
+ return false;
+ }
+};
+
+template <typename Scalar>
+struct zeta_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar x, Scalar q) {
+ /* zeta.c
+ *
+ * Riemann zeta function of two arguments
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double x, q, y, zeta();
+ *
+ * y = zeta( x, q );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ *
+ *
+ * inf.
+ * - -x
+ * zeta(x,q) = > (k+q)
+ * -
+ * k=0
+ *
+ * where x > 1 and q is not a negative integer or zero.
+ * The Euler-Maclaurin summation formula is used to obtain
+ * the expansion
+ *
+ * n
+ * - -x
+ * zeta(x,q) = > (k+q)
+ * -
+ * k=1
+ *
+ * 1-x inf. B x(x+1)...(x+2j)
+ * (n+q) 1 - 2j
+ * + --------- - ------- + > --------------------
+ * x-1 x - x+2j+1
+ * 2(n+q) j=1 (2j)! (n+q)
+ *
+ * where the B2j are Bernoulli numbers. Note that (see zetac.c)
+ * zeta(x,1) = zetac(x) + 1.
+ *
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error for single precision:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,25 10000 6.9e-7 1.0e-7
+ *
+ * Large arguments may produce underflow in powf(), in which
+ * case the results are inaccurate.
+ *
+ * REFERENCE:
+ *
+ * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
+ * Series, and Products, p. 1073; Academic Press, 1980.
+ *
+ */
+
+ int i;
+ Scalar p, r, a, b, k, s, t, w;
+
+ const Scalar A[] = {
+ Scalar(12.0),
+ Scalar(-720.0),
+ Scalar(30240.0),
+ Scalar(-1209600.0),
+ Scalar(47900160.0),
+ Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/
+ Scalar(7.47242496e10),
+ Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/
+ Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/
+ Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/
+ Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/
+ Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/
+ };
+
+ const Scalar maxnum = NumTraits<Scalar>::infinity();
+ const Scalar zero = 0.0, half = 0.5, one = 1.0;
+ const Scalar machep = igamma_helper<Scalar>::machep();
+ const Scalar nan = NumTraits<Scalar>::quiet_NaN();
+
+ if( x == one )
+ return maxnum;
+
+ if( x < one )
+ {
+ return nan;
+ }
+
+ if( q <= zero )
+ {
+ if(q == numext::floor(q))
+ {
+ return maxnum;
+ }
+ p = x;
+ r = numext::floor(p);
+ if (p != r)
+ return nan;
+ }
+
+ /* Permit negative q but continue sum until n+q > +9 .
+ * This case should be handled by a reflection formula.
+ * If q<0 and x is an integer, there is a relation to
+ * the polygamma function.
+ */
+ s = numext::pow( q, -x );
+ a = q;
+ b = zero;
+ // Run the summation in a helper function that is specific to the floating precision
+ if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) {
+ return s;
+ }
+
+ w = a;
+ s += b*w/(x-one);
+ s -= half * b;
+ a = one;
+ k = zero;
+ for( i=0; i<12; i++ )
+ {
+ a *= x + k;
+ b /= w;
+ t = a*b/A[i];
+ s = s + t;
+ t = numext::abs(t/s);
+ if( t < machep )
+ return s;
+ k += one;
+ a *= x + k;
+ b /= w;
+ k += one;
+ }
+ return s;
+ }
+};
+
+#endif // EIGEN_HAS_C99_MATH
+
+/****************************************************************************
+ * Implementation of polygamma function *
+ ****************************************************************************/
+
+template <typename Scalar>
+struct polygamma_retval {
+ typedef Scalar type;
+};
+
+#ifndef EIGEN_HAS_C99_MATH
+
+template <typename Scalar>
+struct polygamma_impl {
+ EIGEN_DEVICE_FUNC
+ static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
+ THIS_TYPE_IS_NOT_SUPPORTED);
+ return Scalar(0);
+ }
+};
+
+#else
+
+template <typename Scalar>
+struct polygamma_impl {
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar n, Scalar x) {
+ Scalar zero = 0.0, one = 1.0;
+ Scalar nplus = n + one;
+ const Scalar nan = NumTraits<Scalar>::quiet_NaN();
+
+ // Check that n is an integer
+ if (numext::floor(n) != n) {
+ return nan;
+ }
+ // Just return the digamma function for n = 1
+ else if (n == zero) {
+ return digamma_impl<Scalar>::run(x);
+ }
+ // Use the same implementation as scipy
+ else {
+ Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus));
+ return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x);
+ }
+ }
+};
+
+#endif // EIGEN_HAS_C99_MATH
+
+} // end namespace internal
+
+namespace numext {
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar)
+ lgamma(const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
+ digamma(const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
+zeta(const Scalar& x, const Scalar& q) {
+ return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar)
+polygamma(const Scalar& n, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
+ erf(const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
+ erfc(const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
+ igamma(const Scalar& a, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
+ igammac(const Scalar& a, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
+}
+
+} // end namespace numext
+
+
+} // end namespace Eigen
+
+#endif // EIGEN_SPECIAL_FUNCTIONS_H