aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/Dot.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/Dot.h')
-rw-r--r--Eigen/src/Core/Dot.h26
1 files changed, 20 insertions, 6 deletions
diff --git a/Eigen/src/Core/Dot.h b/Eigen/src/Core/Dot.h
index e9be929ce..6a1535787 100644
--- a/Eigen/src/Core/Dot.h
+++ b/Eigen/src/Core/Dot.h
@@ -248,10 +248,10 @@ struct ei_dot_impl<Derived1, Derived2, LinearVectorization, CompleteUnrolling>
* \only_for_vectors
*
* \note If the scalar type is complex numbers, then this function returns the hermitian
- * (sesquilinear) dot product, linear in the first variable and anti-linear in the
+ * (sesquilinear) dot product, linear in the first variable and conjugate-linear in the
* second variable.
*
- * \sa norm2(), norm()
+ * \sa squaredNorm(), norm()
*/
template<typename Derived>
template<typename OtherDerived>
@@ -275,6 +275,8 @@ MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
*
* \note This is \em not the \em l2 norm.
*
+ * \deprecated Use squaredNorm() instead. This norm2() function is kept only for compatibility and will be removed in Eigen 2.0.
+ *
* \only_for_vectors
*
* \sa dot(), norm()
@@ -285,16 +287,28 @@ inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<
return ei_real(dot(*this));
}
+/** \returns the squared norm of *this, i.e. the dot product of *this with itself.
+ *
+ * \only_for_vectors
+ *
+ * \sa dot(), norm()
+ */
+template<typename Derived>
+inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
+{
+ return ei_real(dot(*this));
+}
+
/** \returns the \em l2 norm of *this, i.e. the square root of the dot product of *this with itself.
*
* \only_for_vectors
*
- * \sa dot(), norm2()
+ * \sa dot(), normSquared()
*/
template<typename Derived>
inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
- return ei_sqrt(norm2());
+ return ei_sqrt(squaredNorm());
}
/** \returns an expression of the quotient of *this by its own norm.
@@ -338,7 +352,7 @@ bool MatrixBase<Derived>::isOrthogonal
{
typename ei_nested<Derived,2>::type nested(derived());
typename ei_nested<OtherDerived,2>::type otherNested(other.derived());
- return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.norm2() * otherNested.norm2();
+ return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
/** \returns true if *this is approximately an unitary matrix,
@@ -358,7 +372,7 @@ bool MatrixBase<Derived>::isUnitary(RealScalar prec) const
typename Derived::Nested nested(derived());
for(int i = 0; i < cols(); i++)
{
- if(!ei_isApprox(nested.col(i).norm2(), static_cast<Scalar>(1), prec))
+ if(!ei_isApprox(nested.col(i).squaredNorm(), static_cast<Scalar>(1), prec))
return false;
for(int j = 0; j < i; j++)
if(!ei_isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec))