aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--Eigen/src/Core/MathFunctions.h100
-rw-r--r--Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h4
-rw-r--r--Eigen/src/Core/functors/UnaryFunctors.h2
-rw-r--r--test/array_cwise.cpp55
4 files changed, 92 insertions, 69 deletions
diff --git a/Eigen/src/Core/MathFunctions.h b/Eigen/src/Core/MathFunctions.h
index 511a4276f..e29733c13 100644
--- a/Eigen/src/Core/MathFunctions.h
+++ b/Eigen/src/Core/MathFunctions.h
@@ -555,45 +555,63 @@ struct rint_retval
****************************************************************************/
#if EIGEN_HAS_CXX11_MATH
- template<typename Scalar>
- struct arg_impl {
- EIGEN_DEVICE_FUNC
- static inline Scalar run(const Scalar& x)
- {
- #if defined(EIGEN_HIP_DEVICE_COMPILE)
- // HIP does not seem to have a native device side implementation for the math routine "arg"
- using std::arg;
- #else
- EIGEN_USING_STD(arg);
- #endif
- return arg(x);
- }
- };
-#else
- template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
- struct arg_default_impl
+// std::arg is only defined for types of std::complex, or integer types or float/double/long double
+template<typename Scalar,
+ bool HasStdImpl = NumTraits<Scalar>::IsComplex || is_integral<Scalar>::value
+ || is_same<Scalar, float>::value || is_same<Scalar, double>::value
+ || is_same<Scalar, long double>::value >
+struct arg_default_impl;
+
+template<typename Scalar>
+struct arg_default_impl<Scalar, true> {
+ EIGEN_DEVICE_FUNC
+ static inline Scalar run(const Scalar& x)
{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); }
- };
+ #if defined(EIGEN_HIP_DEVICE_COMPILE)
+ // HIP does not seem to have a native device side implementation for the math routine "arg"
+ using std::arg;
+ #else
+ EIGEN_USING_STD(arg);
+ #endif
+ return static_cast<Scalar>(arg(x));
+ }
+};
- template<typename Scalar>
- struct arg_default_impl<Scalar,true>
+// Must be non-complex floating-point type (e.g. half/bfloat16).
+template<typename Scalar>
+struct arg_default_impl<Scalar, false> {
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
{
- typedef typename NumTraits<Scalar>::Real RealScalar;
- EIGEN_DEVICE_FUNC
- static inline RealScalar run(const Scalar& x)
- {
- EIGEN_USING_STD(arg);
- return arg(x);
- }
- };
+ return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0);
+ }
+};
+#else
+template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
+struct arg_default_impl
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0);
+ }
+};
- template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
+template<typename Scalar>
+struct arg_default_impl<Scalar,true>
+{
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
+ static inline RealScalar run(const Scalar& x)
+ {
+ EIGEN_USING_STD(arg);
+ return arg(x);
+ }
+};
#endif
+template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
template<typename Scalar>
struct arg_retval
@@ -1425,7 +1443,7 @@ template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T log(const T &x) {
EIGEN_USING_STD(log);
- return log(x);
+ return static_cast<T>(log(x));
}
#if defined(SYCL_DEVICE_ONLY)
@@ -1602,7 +1620,7 @@ template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T acosh(const T &x) {
EIGEN_USING_STD(acosh);
- return acosh(x);
+ return static_cast<T>(acosh(x));
}
#endif
@@ -1631,7 +1649,7 @@ template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T asinh(const T &x) {
EIGEN_USING_STD(asinh);
- return asinh(x);
+ return static_cast<T>(asinh(x));
}
#endif
@@ -1652,7 +1670,7 @@ template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T atan(const T &x) {
EIGEN_USING_STD(atan);
- return atan(x);
+ return static_cast<T>(atan(x));
}
#if EIGEN_HAS_CXX11_MATH
@@ -1660,7 +1678,7 @@ template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T atanh(const T &x) {
EIGEN_USING_STD(atanh);
- return atanh(x);
+ return static_cast<T>(atanh(x));
}
#endif
@@ -1682,7 +1700,7 @@ template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T cosh(const T &x) {
EIGEN_USING_STD(cosh);
- return cosh(x);
+ return static_cast<T>(cosh(x));
}
#if defined(SYCL_DEVICE_ONLY)
@@ -1701,7 +1719,7 @@ template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T sinh(const T &x) {
EIGEN_USING_STD(sinh);
- return sinh(x);
+ return static_cast<T>(sinh(x));
}
#if defined(SYCL_DEVICE_ONLY)
diff --git a/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h b/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h
index 69c92a8cc..e3e91f4ab 100644
--- a/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h
+++ b/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h
@@ -804,8 +804,8 @@ EIGEN_STRONG_INLINE
void veltkamp_splitting(const Packet& x, Packet& x_hi, Packet& x_lo) {
typedef typename unpacket_traits<Packet>::type Scalar;
EIGEN_CONSTEXPR int shift = (NumTraits<Scalar>::digits() + 1) / 2;
- EIGEN_CONSTEXPR Scalar shift_scale = Scalar(uint64_t(1) << shift);
- Packet gamma = pmul(pset1<Packet>(shift_scale + 1), x);
+ Scalar shift_scale = Scalar(uint64_t(1) << shift); // Scalar constructor not necessarily constexpr.
+ Packet gamma = pmul(pset1<Packet>(shift_scale + Scalar(1)), x);
#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
x_hi = pmadd(pset1<Packet>(-shift_scale), x, gamma);
#else
diff --git a/Eigen/src/Core/functors/UnaryFunctors.h b/Eigen/src/Core/functors/UnaryFunctors.h
index 976ecba59..c98fa573c 100644
--- a/Eigen/src/Core/functors/UnaryFunctors.h
+++ b/Eigen/src/Core/functors/UnaryFunctors.h
@@ -403,7 +403,7 @@ struct functor_traits<scalar_log10_op<Scalar> >
*/
template<typename Scalar> struct scalar_log2_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log2_op)
- EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(EIGEN_LOG2E) * std::log(a); }
+ EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(EIGEN_LOG2E) * numext::log(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog2(a); }
};
diff --git a/test/array_cwise.cpp b/test/array_cwise.cpp
index 27702c19d..6ea504c09 100644
--- a/test/array_cwise.cpp
+++ b/test/array_cwise.cpp
@@ -329,7 +329,7 @@ template<typename ArrayType> void array_real(const ArrayType& m)
m3(rows, cols),
m4 = m1;
- m4 = (m4.abs()==Scalar(0)).select(1,m4);
+ m4 = (m4.abs()==Scalar(0)).select(Scalar(1),m4);
Scalar s1 = internal::random<Scalar>();
@@ -358,7 +358,7 @@ template<typename ArrayType> void array_real(const ArrayType& m)
VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
- VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
+ VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
VERIFY_IS_APPROX(m1.abs(), abs(m1));
VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
VERIFY_IS_APPROX(m1.square(), square(m1));
@@ -367,11 +367,11 @@ template<typename ArrayType> void array_real(const ArrayType& m)
VERIFY_IS_APPROX(m1.sign(), sign(m1));
VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all());
- // avoid NaNs with abs() so verification doesn't fail
- m3 = m1.abs();
- VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1)));
- VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m1)));
- VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m1)));
+ // avoid inf and NaNs so verification doesn't fail
+ m3 = m4.abs();
+ VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3)));
+ VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m3)));
+ VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m3)));
VERIFY_IS_APPROX(m3.log(), log(m3));
VERIFY_IS_APPROX(m3.log1p(), log1p(m3));
VERIFY_IS_APPROX(m3.log10(), log10(m3));
@@ -383,23 +383,23 @@ template<typename ArrayType> void array_real(const ArrayType& m)
VERIFY_IS_APPROX(sin(m1.asin()), m1);
VERIFY_IS_APPROX(cos(m1.acos()), m1);
VERIFY_IS_APPROX(tan(m1.atan()), m1);
- VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
- VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
- VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
- VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0+exp(-m1))));
- VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast<Scalar>())*std::acos(-1.0));
+ VERIFY_IS_APPROX(sinh(m1), Scalar(0.5)*(exp(m1)-exp(-m1)));
+ VERIFY_IS_APPROX(cosh(m1), Scalar(0.5)*(exp(m1)+exp(-m1)));
+ VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5)*(exp(m1)-exp(-m1)))/(Scalar(0.5)*(exp(m1)+exp(-m1))));
+ VERIFY_IS_APPROX(logistic(m1), (Scalar(1)/(Scalar(1)+exp(-m1))));
+ VERIFY_IS_APPROX(arg(m1), ((m1<Scalar(0)).template cast<Scalar>())*Scalar(std::acos(Scalar(-1))));
VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all());
VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all());
VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all());
VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all());
VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all());
- VERIFY((Eigen::isnan)((m1*0.0)/0.0).all());
- VERIFY((Eigen::isinf)(m4/0.0).all());
- VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*0.0/0.0)) && (!(Eigen::isfinite)(m4/0.0))).all());
- VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
+ VERIFY((Eigen::isnan)((m1*Scalar(0))/Scalar(0)).all());
+ VERIFY((Eigen::isinf)(m4/Scalar(0)).all());
+ VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*Scalar(0)/Scalar(0))) && (!(Eigen::isfinite)(m4/Scalar(0)))).all());
+ VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
VERIFY((abs(m1) == m1 || abs(m1) == -m1).all());
- VERIFY_IS_APPROX(m3, sqrt(abs2(m1)));
+ VERIFY_IS_APPROX(m3, sqrt(abs2(m3)));
VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1));
VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
VERIFY_IS_APPROX( m1*m1.sign(),m1.abs());
@@ -412,26 +412,29 @@ template<typename ArrayType> void array_real(const ArrayType& m)
// shift argument of logarithm so that it is not zero
Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
- VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber));
- VERIFY_IS_APPROX((m3 + smallNumber + 1).log() , log1p(abs(m1) + smallNumber));
+ VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m3) + smallNumber));
+ VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log() , log1p(abs(m3) + smallNumber));
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
VERIFY_IS_APPROX(m1.exp(), exp(m1));
VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
VERIFY_IS_APPROX(m1.expm1(), expm1(m1));
- VERIFY_IS_APPROX((m3 + smallNumber).exp() - 1, expm1(abs(m3) + smallNumber));
+ VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber));
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt());
VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt());
- VERIFY_IS_APPROX(m1.pow(RealScalar(-2)), m1.square().inverse());
+
+ // Avoid inf and NaN.
+ m3 = (m1.square()<NumTraits<Scalar>::epsilon()).select(Scalar(1),m3);
+ VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse());
pow_test<Scalar>();
- VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
- VERIFY_IS_APPROX(log2(m3), log(m3)/log(2));
+ VERIFY_IS_APPROX(log10(m3), log(m3)/log(Scalar(10)));
+ VERIFY_IS_APPROX(log2(m3), log(m3)/log(Scalar(2)));
// scalar by array division
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
@@ -480,7 +483,7 @@ template<typename ArrayType> void array_complex(const ArrayType& m)
VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
- VERIFY_IS_APPROX(m1.inverse(), inverse(m1));
+ VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
VERIFY_IS_APPROX(m1.log(), log(m1));
VERIFY_IS_APPROX(m1.log10(), log10(m1));
VERIFY_IS_APPROX(m1.log2(), log2(m1));
@@ -534,7 +537,7 @@ template<typename ArrayType> void array_complex(const ArrayType& m)
VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all());
- VERIFY_IS_APPROX(inverse(inverse(m1)),m1);
+ VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real())+square(m1.imag())));
VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1)));
@@ -622,6 +625,8 @@ EIGEN_DECLARE_TEST(array_cwise)
CALL_SUBTEST_2( array_real(Array22f()) );
CALL_SUBTEST_3( array_real(Array44d()) );
CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+ CALL_SUBTEST_7( array_real(Array<Eigen::half, 32, 32>()) );
+ CALL_SUBTEST_8( array_real(Array<Eigen::bfloat16, 32, 32>()) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );