aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--Eigen/src/Core/GenericPacketMath.h2
-rw-r--r--Eigen/src/Core/arch/AVX512/Complex.h12
-rw-r--r--Eigen/src/Core/arch/AVX512/PacketMath.h4
-rw-r--r--Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h123
-rw-r--r--Eigen/src/Core/util/ConfigureVectorization.h7
-rw-r--r--Eigen/src/Core/util/Macros.h43
-rwxr-xr-xEigen/src/Core/util/Meta.h33
-rw-r--r--Eigen/src/Geometry/Transform.h7
-rw-r--r--Eigen/src/LU/FullPivLU.h10
-rw-r--r--Eigen/src/LU/PartialPivLU.h2
-rw-r--r--doc/CoeffwiseMathFunctionsTable.dox1
-rwxr-xr-xtest/geo_transformations.cpp61
-rw-r--r--test/lu.cpp4
-rw-r--r--test/packetmath.cpp1
14 files changed, 246 insertions, 64 deletions
diff --git a/Eigen/src/Core/GenericPacketMath.h b/Eigen/src/Core/GenericPacketMath.h
index bb3275fe8..04a321b9f 100644
--- a/Eigen/src/Core/GenericPacketMath.h
+++ b/Eigen/src/Core/GenericPacketMath.h
@@ -216,7 +216,7 @@ pandnot(const Packet& a, const Packet& b) { return a & (~b); }
/** \internal \returns ones */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
-ptrue(const Packet& /*a*/) { Packet b; memset(&b, 0xff, sizeof(b)); return b;}
+ptrue(const Packet& /*a*/) { Packet b; memset((void*)&b, 0xff, sizeof(b)); return b;}
template <typename RealScalar>
EIGEN_DEVICE_FUNC inline std::complex<RealScalar> ptrue(const std::complex<RealScalar>& /*a*/) {
diff --git a/Eigen/src/Core/arch/AVX512/Complex.h b/Eigen/src/Core/arch/AVX512/Complex.h
index f2034a713..7bb2fd630 100644
--- a/Eigen/src/Core/arch/AVX512/Complex.h
+++ b/Eigen/src/Core/arch/AVX512/Complex.h
@@ -308,18 +308,18 @@ template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<
template<> EIGEN_DEVICE_FUNC inline Packet4cd pgather<std::complex<double>, Packet4cd>(const std::complex<double>* from, Index stride)
{
return Packet4cd(_mm512_insertf64x4(_mm512_castpd256_pd512(
- _mm256_insertf128_pd(_mm256_castpd128_pd256(pload<Packet1cd>(from+0*stride).v), pload<Packet1cd>(from+1*stride).v,1)),
- _mm256_insertf128_pd(_mm256_castpd128_pd256(pload<Packet1cd>(from+2*stride).v), pload<Packet1cd>(from+3*stride).v,1), 1));
+ _mm256_insertf128_pd(_mm256_castpd128_pd256(ploadu<Packet1cd>(from+0*stride).v), ploadu<Packet1cd>(from+1*stride).v,1)),
+ _mm256_insertf128_pd(_mm256_castpd128_pd256(ploadu<Packet1cd>(from+2*stride).v), ploadu<Packet1cd>(from+3*stride).v,1), 1));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet4cd>(std::complex<double>* to, const Packet4cd& from, Index stride)
{
__m512i fromi = _mm512_castpd_si512(from.v);
double* tod = (double*)(void*)to;
- _mm_store_pd(tod+0*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,0)) );
- _mm_store_pd(tod+2*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,1)) );
- _mm_store_pd(tod+4*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,2)) );
- _mm_store_pd(tod+6*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,3)) );
+ _mm_storeu_pd(tod+0*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,0)) );
+ _mm_storeu_pd(tod+2*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,1)) );
+ _mm_storeu_pd(tod+4*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,2)) );
+ _mm_storeu_pd(tod+6*stride, _mm_castsi128_pd(_mm512_extracti32x4_epi32(fromi,3)) );
}
template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet4cd>(const Packet4cd& a)
diff --git a/Eigen/src/Core/arch/AVX512/PacketMath.h b/Eigen/src/Core/arch/AVX512/PacketMath.h
index 1164f24b1..4832f2a3b 100644
--- a/Eigen/src/Core/arch/AVX512/PacketMath.h
+++ b/Eigen/src/Core/arch/AVX512/PacketMath.h
@@ -57,7 +57,7 @@ template<> struct packet_traits<float> : default_packet_traits
HasBlend = 0,
HasSin = EIGEN_FAST_MATH,
HasCos = EIGEN_FAST_MATH,
-#if EIGEN_GNUC_AT_LEAST(5, 3) || EIGEN_COMP_CLANG
+#if EIGEN_GNUC_AT_LEAST(5, 3) || (!EIGEN_COMP_GNUC_STRICT)
#ifdef EIGEN_VECTORIZE_AVX512DQ
HasLog = 1,
#endif
@@ -77,7 +77,7 @@ template<> struct packet_traits<double> : default_packet_traits
AlignedOnScalar = 1,
size = 8,
HasHalfPacket = 1,
-#if EIGEN_GNUC_AT_LEAST(5, 3)
+#if EIGEN_GNUC_AT_LEAST(5, 3) || (!EIGEN_COMP_GNUC_STRICT)
HasSqrt = EIGEN_FAST_MATH,
HasRsqrt = EIGEN_FAST_MATH,
#endif
diff --git a/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h b/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h
index 8c6e4f5c7..ce3f0fc68 100644
--- a/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h
+++ b/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h
@@ -3,7 +3,7 @@
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
-// Copyright (C) 2009-2018 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -253,15 +253,68 @@ Packet pexp_double(const Packet _x)
return pmax(pldexp(x,fx), _x);
}
-/* The code is the rewriting of the cephes sinf/cosf functions.
- Precision is excellent as long as x < 8192 (I did not bother to
- take into account the special handling they have for greater values
- -- it does not return garbage for arguments over 8192, though, but
- the extra precision is missing).
+// The following code is inspired by the following stack-overflow answer:
+// https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751
+// It has been largely optimized:
+// - By-pass calls to frexp.
+// - Aligned loads of required 96 bits of 2/pi. This is accomplished by
+// (1) balancing the mantissa and exponent to the required bits of 2/pi are
+// aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi.
+// - Avoid a branch in rounding and extraction of the remaining fractional part.
+// Overall, I measured a speed up higher than x2 on x86-64.
+inline float trig_reduce_huge (float xf, int *quadrant)
+{
+ using Eigen::numext::int32_t;
+ using Eigen::numext::uint32_t;
+ using Eigen::numext::int64_t;
+ using Eigen::numext::uint64_t;
- Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
- surprising but correct result.
-*/
+ const double pio2_62 = 3.4061215800865545e-19; // pi/2 * 2^-62
+ const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt
+
+ // 192 bits of 2/pi for Payne-Hanek reduction
+ // Bits are introduced by packet of 8 to enable aligned reads.
+ static const uint32_t two_over_pi [] =
+ {
+ 0x00000028, 0x000028be, 0x0028be60, 0x28be60db,
+ 0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a,
+ 0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4,
+ 0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770,
+ 0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566,
+ 0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410,
+ 0x10e41000, 0xe4100000
+ };
+
+ uint32_t xi = numext::as_uint(xf);
+ // Below, -118 = -126 + 8.
+ // -126 is to get the exponent,
+ // +8 is to enable alignment of 2/pi's bits on 8 bits.
+ // This is possible because the fractional part of x as only 24 meaningful bits.
+ uint32_t e = (xi >> 23) - 118;
+ // Extract the mantissa and shift it to align it wrt the exponent
+ xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7);
+
+ uint32_t i = e >> 3;
+ uint32_t twoopi_1 = two_over_pi[i-1];
+ uint32_t twoopi_2 = two_over_pi[i+3];
+ uint32_t twoopi_3 = two_over_pi[i+7];
+
+ // Compute x * 2/pi in 2.62-bit fixed-point format.
+ uint64_t p;
+ p = uint64_t(xi) * twoopi_3;
+ p = uint64_t(xi) * twoopi_2 + (p >> 32);
+ p = (uint64_t(xi * twoopi_1) << 32) + p;
+
+ // Round to nearest: add 0.5 and extract integral part.
+ uint64_t q = (p + zero_dot_five) >> 62;
+ *quadrant = int(q);
+ // Now it remains to compute "r = x - q*pi/2" with high accuracy,
+ // since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as:
+ // r = (p-q)*pi/2,
+ // where the product can be be carried out with sufficient accuracy using double precision.
+ p -= q<<62;
+ return float(double(int64_t(p)) * pio2_62);
+}
template<bool ComputeSine,typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
@@ -285,17 +338,6 @@ Packet psincos_float(const Packet& _x)
PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi
- // Compute the sign to apply to the polynomial.
- // sin: sign = second_bit(y_int) xor signbit(_x)
- // cos: sign = second_bit(y_int+1)
- Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(pshiftleft<30>(y_int)))
- : preinterpret<Packet>(pshiftleft<30>(padd(y_int,csti_1)));
- sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
-
- // Get the polynomial selection mask from the second bit of y_int
- // We'll calculate both (sin and cos) polynomials and then select from the two.
- Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));
-
// Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4
// using "Extended precision modular arithmetic"
#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD)
@@ -332,29 +374,36 @@ Packet psincos_float(const Packet& _x)
// The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee
#endif
- // We use huge_vals as a temporary for abs(_x) to ensure huge_vals
- // is fully initialized for the last pselect(). (prevent compiler warning)
- Packet huge_vals = pabs(_x);
- Packet huge_mask = pcmp_le(pset1<Packet>(huge_th),huge_vals);
-
- if(predux_any(huge_mask))
+ if(predux_any(pcmp_le(pset1<Packet>(huge_th),pabs(_x))))
{
const int PacketSize = unpacket_traits<Packet>::size;
- #if EIGEN_HAS_CXX11
- alignas(Packet) float vals[PacketSize];
- #else
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize];
- #endif
- pstoreu(vals, _x);
- for(int k=0; k<PacketSize;++k) {
+ EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize];
+ EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize];
+ pstoreu(vals, pabs(_x));
+ pstoreu(x_cpy, x);
+ pstoreu(y_int2, y_int);
+ for(int k=0; k<PacketSize;++k)
+ {
float val = vals[k];
- if(numext::abs(val)>=huge_th) {
- vals[k] = ComputeSine ? std::sin(val) : std::cos(val);
- }
+ if(val>=huge_th && (numext::isfinite)(val))
+ x_cpy[k] = trig_reduce_huge(val,&y_int2[k]);
}
- huge_vals = ploadu<Packet>(vals);
+ x = ploadu<Packet>(x_cpy);
+ y_int = ploadu<PacketI>(y_int2);
}
+ // Compute the sign to apply to the polynomial.
+ // sin: sign = second_bit(y_int) xor signbit(_x)
+ // cos: sign = second_bit(y_int+1)
+ Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(pshiftleft<30>(y_int)))
+ : preinterpret<Packet>(pshiftleft<30>(padd(y_int,csti_1)));
+ sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
+
+ // Get the polynomial selection mask from the second bit of y_int
+ // We'll calculate both (sin and cos) polynomials and then select from the two.
+ Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));
+
Packet x2 = pmul(x,x);
// Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4)
@@ -383,7 +432,7 @@ Packet psincos_float(const Packet& _x)
: pselect(poly_mask,y1,y2);
// Update the sign and filter huge inputs
- return pselect(huge_mask, huge_vals, pxor(y, sign_bit));
+ return pxor(y, sign_bit);
}
template<typename Packet>
diff --git a/Eigen/src/Core/util/ConfigureVectorization.h b/Eigen/src/Core/util/ConfigureVectorization.h
index 121476394..b4d423cb0 100644
--- a/Eigen/src/Core/util/ConfigureVectorization.h
+++ b/Eigen/src/Core/util/ConfigureVectorization.h
@@ -29,10 +29,15 @@
*
* If we made alignment depend on whether or not EIGEN_VECTORIZE is defined, it would be impossible to link
* vectorized and non-vectorized code.
+ *
+ * FIXME: this code can be cleaned up once we switch to proper C++11 only.
*/
#if (defined EIGEN_CUDACC)
#define EIGEN_ALIGN_TO_BOUNDARY(n) __align__(n)
#define EIGEN_ALIGNOF(x) __alignof(x)
+#elif EIGEN_HAS_ALIGNAS
+ #define EIGEN_ALIGN_TO_BOUNDARY(n) alignas(n)
+ #define EIGEN_ALIGNOF(x) alignof(x)
#elif EIGEN_COMP_GNUC || EIGEN_COMP_PGI || EIGEN_COMP_IBM || EIGEN_COMP_ARM
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
#define EIGEN_ALIGNOF(x) __alignof(x)
@@ -44,7 +49,7 @@
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
#define EIGEN_ALIGNOF(x) __alignof(x)
#else
- #error Please tell me what is the equivalent of __attribute__((aligned(n))) and __alignof(x) for your compiler
+ #error Please tell me what is the equivalent of alignas(n) and alignof(x) for your compiler
#endif
// If the user explicitly disable vectorization, then we also disable alignment
diff --git a/Eigen/src/Core/util/Macros.h b/Eigen/src/Core/util/Macros.h
index c7dba1fc4..982b98b50 100644
--- a/Eigen/src/Core/util/Macros.h
+++ b/Eigen/src/Core/util/Macros.h
@@ -129,16 +129,21 @@
#define EIGEN_COMP_MSVC_STRICT 0
#endif
-/// \internal EIGEN_COMP_IBM set to 1 if the compiler is IBM XL C++
-#if defined(__IBMCPP__) || defined(__xlc__)
- #define EIGEN_COMP_IBM 1
+/// \internal EIGEN_COMP_IBM set to xlc version if the compiler is IBM XL C++
+// XLC version
+// 3.1 0x0301
+// 4.5 0x0405
+// 5.0 0x0500
+// 12.1 0x0C01
+#if defined(__IBMCPP__) || defined(__xlc__) || defined(__ibmxl__)
+ #define EIGEN_COMP_IBM __xlC__
#else
#define EIGEN_COMP_IBM 0
#endif
-/// \internal EIGEN_COMP_PGI set to 1 if the compiler is Portland Group Compiler
+/// \internal EIGEN_COMP_PGI set to PGI version if the compiler is Portland Group Compiler
#if defined(__PGI)
- #define EIGEN_COMP_PGI 1
+ #define EIGEN_COMP_PGI (__PGIC__*100+__PGIC_MINOR__)
#else
#define EIGEN_COMP_PGI 0
#endif
@@ -347,9 +352,17 @@
#define EIGEN_OS_WIN_STRICT 0
#endif
-/// \internal EIGEN_OS_SUN set to 1 if the OS is SUN
+/// \internal EIGEN_OS_SUN set to __SUNPRO_C if the OS is SUN
+// compiler solaris __SUNPRO_C
+// version studio
+// 5.7 10 0x570
+// 5.8 11 0x580
+// 5.9 12 0x590
+// 5.10 12.1 0x5100
+// 5.11 12.2 0x5110
+// 5.12 12.3 0x5120
#if (defined(sun) || defined(__sun)) && !(defined(__SVR4) || defined(__svr4__))
- #define EIGEN_OS_SUN 1
+ #define EIGEN_OS_SUN __SUNPRO_C
#else
#define EIGEN_OS_SUN 0
#endif
@@ -546,6 +559,22 @@
#endif
#endif
+#ifndef EIGEN_HAS_ALIGNAS
+#if EIGEN_MAX_CPP_VER>=11 && EIGEN_HAS_CXX11 && \
+ ( __has_feature(cxx_alignas) \
+ || EIGEN_HAS_CXX14 \
+ || (EIGEN_COMP_MSVC >= 1800) \
+ || (EIGEN_GNUC_AT_LEAST(4,8)) \
+ || (EIGEN_COMP_CLANG>=305) \
+ || (EIGEN_COMP_ICC>=1500) \
+ || (EIGEN_COMP_PGI>=1500) \
+ || (EIGEN_COMP_SUN>=0x5130))
+#define EIGEN_HAS_ALIGNAS 1
+#else
+#define EIGEN_HAS_ALIGNAS 0
+#endif
+#endif
+
// Does the compiler support type_traits?
// - full support of type traits was added only to GCC 5.1.0.
// - 20150626 corresponds to the last release of 4.x libstdc++
diff --git a/Eigen/src/Core/util/Meta.h b/Eigen/src/Core/util/Meta.h
index 1415b3fc1..8fcb18a94 100755
--- a/Eigen/src/Core/util/Meta.h
+++ b/Eigen/src/Core/util/Meta.h
@@ -636,8 +636,41 @@ template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to<double>()(x,y); }
#endif
+/** \internal extract the bits of the float \a x */
+inline unsigned int as_uint(float x)
+{
+ unsigned int ret;
+ std::memcpy(&ret, &x, sizeof(float));
+ return ret;
+}
+
} // end namespace numext
} // end namespace Eigen
+// Define portable (u)int{32,64} types
+#if EIGEN_HAS_CXX11
+#include <cstdint>
+namespace Eigen {
+namespace numext {
+typedef std::uint32_t uint32_t;
+typedef std::int32_t int32_t;
+typedef std::uint64_t uint64_t;
+typedef std::int64_t int64_t;
+}
+}
+#else
+// Without c++11, all compilers able to compile Eigen also
+// provides the C99 stdint.h header file.
+#include <stdint.h>
+namespace Eigen {
+namespace numext {
+typedef ::uint32_t uint32_t;
+typedef ::int32_t int32_t;
+typedef ::uint64_t uint64_t;
+typedef ::int64_t int64_t;
+}
+}
+#endif
+
#endif // EIGEN_META_H
diff --git a/Eigen/src/Geometry/Transform.h b/Eigen/src/Geometry/Transform.h
index 75991aaed..3670767aa 100644
--- a/Eigen/src/Geometry/Transform.h
+++ b/Eigen/src/Geometry/Transform.h
@@ -97,6 +97,9 @@ template<int Mode> struct transform_make_affine;
* - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
* - #Projective: the transformation is stored as a (Dim+1)^2 matrix
* without any assumption.
+ * - #Isometry: same as #Affine with the additional assumption that
+ * the linear part represents a rotation. This assumption is exploited
+ * to speed up some functions such as inverse() and rotation().
* \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
* These Options are passed directly to the underlying matrix type.
*
@@ -252,11 +255,11 @@ protected:
public:
/** Default constructor without initialization of the meaningful coefficients.
- * If Mode==Affine, then the last row is set to [0 ... 0 1] */
+ * If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1] */
EIGEN_DEVICE_FUNC inline Transform()
{
check_template_params();
- internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
+ internal::transform_make_affine<(int(Mode)==Affine || int(Mode)==Isometry) ? Affine : AffineCompact>::run(m_matrix);
}
EIGEN_DEVICE_FUNC inline Transform(const Transform& other)
diff --git a/Eigen/src/LU/FullPivLU.h b/Eigen/src/LU/FullPivLU.h
index 344ec8926..b4f4bc6ee 100644
--- a/Eigen/src/LU/FullPivLU.h
+++ b/Eigen/src/LU/FullPivLU.h
@@ -18,6 +18,7 @@ template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
+ typedef int StorageIndex;
enum { Flags = 0 };
};
@@ -64,7 +65,6 @@ template<typename _MatrixType> class FullPivLU
typedef SolverBase<FullPivLU> Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
- // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
@@ -529,8 +529,8 @@ void FullPivLU<MatrixType>::computeInPlace()
m_nonzero_pivots = k;
for(Index i = k; i < size; ++i)
{
- m_rowsTranspositions.coeffRef(i) = i;
- m_colsTranspositions.coeffRef(i) = i;
+ m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
+ m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
}
break;
}
@@ -541,8 +541,8 @@ void FullPivLU<MatrixType>::computeInPlace()
// Now that we've found the pivot, we need to apply the row/col swaps to
// bring it to the location (k,k).
- m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
- m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
+ m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
+ m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
if(k != row_of_biggest_in_corner) {
m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
++number_of_transpositions;
diff --git a/Eigen/src/LU/PartialPivLU.h b/Eigen/src/LU/PartialPivLU.h
index bfcd2c95b..ecc0e748f 100644
--- a/Eigen/src/LU/PartialPivLU.h
+++ b/Eigen/src/LU/PartialPivLU.h
@@ -19,6 +19,7 @@ template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
{
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
+ typedef int StorageIndex;
typedef traits<_MatrixType> BaseTraits;
enum {
Flags = BaseTraits::Flags & RowMajorBit,
@@ -80,7 +81,6 @@ template<typename _MatrixType> class PartialPivLU
typedef _MatrixType MatrixType;
typedef SolverBase<PartialPivLU> Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
- // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
diff --git a/doc/CoeffwiseMathFunctionsTable.dox b/doc/CoeffwiseMathFunctionsTable.dox
index e14eaf615..080e056e1 100644
--- a/doc/CoeffwiseMathFunctionsTable.dox
+++ b/doc/CoeffwiseMathFunctionsTable.dox
@@ -321,7 +321,6 @@ This also means that, unless specified, if the function \c std::foo is available
<td></td>
</tr>
<tr>
-<tr>
<td class="code">
\anchor cwisetable_asinh
a.\link ArrayBase::asinh asinh\endlink(); \n
diff --git a/test/geo_transformations.cpp b/test/geo_transformations.cpp
index bf920696b..25f1d9aa0 100755
--- a/test/geo_transformations.cpp
+++ b/test/geo_transformations.cpp
@@ -612,6 +612,62 @@ template<typename Scalar, int Dim, int Options> void transform_products()
VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m);
}
+template<typename Scalar, int Mode, int Options> void transformations_no_scale()
+{
+ /* this test covers the following files:
+ Cross.h Quaternion.h, Transform.h
+ */
+ typedef Matrix<Scalar,3,1> Vector3;
+ typedef Matrix<Scalar,4,1> Vector4;
+ typedef Quaternion<Scalar> Quaternionx;
+ typedef AngleAxis<Scalar> AngleAxisx;
+ typedef Transform<Scalar,3,Mode,Options> Transform3;
+ typedef Translation<Scalar,3> Translation3;
+ typedef Matrix<Scalar,4,4> Matrix4;
+
+ Vector3 v0 = Vector3::Random(),
+ v1 = Vector3::Random();
+
+ Transform3 t0, t1, t2;
+
+ Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
+
+ Quaternionx q1, q2;
+
+ q1 = AngleAxisx(a, v0.normalized());
+
+ t0 = Transform3::Identity();
+ VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
+
+ t0.setIdentity();
+ t1.setIdentity();
+ v1 = Vector3::Ones();
+ t0.linear() = q1.toRotationMatrix();
+ t0.pretranslate(v0);
+ t1.linear() = q1.conjugate().toRotationMatrix();
+ t1.translate(-v0);
+
+ VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
+
+ t1.fromPositionOrientationScale(v0, q1, v1);
+ VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
+ VERIFY_IS_APPROX(t1*v1, t0*v1);
+
+ // translation * vector
+ t0.setIdentity();
+ t0.translate(v0);
+ VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
+
+ // Conversion to matrix.
+ Transform3 t3;
+ t3.linear() = q1.toRotationMatrix();
+ t3.translation() = v1;
+ Matrix4 m3 = t3.matrix();
+ VERIFY((m3 * m3.inverse()).isIdentity(test_precision<Scalar>()));
+ // Verify implicit last row is initialized.
+ VERIFY_IS_APPROX(Vector4(m3.row(3)), Vector4(0.0, 0.0, 0.0, 1.0));
+}
+
EIGEN_DECLARE_TEST(geo_transformations)
{
for(int i = 0; i < g_repeat; i++) {
@@ -625,7 +681,7 @@ EIGEN_DECLARE_TEST(geo_transformations)
CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() ));
CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() ));
CALL_SUBTEST_3(( transform_alignment<double>() ));
-
+
CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() ));
CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() ));
@@ -641,5 +697,8 @@ EIGEN_DECLARE_TEST(geo_transformations)
CALL_SUBTEST_8(( transform_associativity<double,2,ColMajor>(Rotation2D<double>(internal::random<double>()*double(EIGEN_PI))) ));
CALL_SUBTEST_8(( transform_associativity<double,3,ColMajor>(Quaterniond::UnitRandom()) ));
+
+ CALL_SUBTEST_9(( transformations_no_scale<double,Affine,AutoAlign>() ));
+ CALL_SUBTEST_9(( transformations_no_scale<double,Isometry,AutoAlign>() ));
}
}
diff --git a/test/lu.cpp b/test/lu.cpp
index 24bea784a..46fd60555 100644
--- a/test/lu.cpp
+++ b/test/lu.cpp
@@ -18,6 +18,8 @@ typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
template<typename MatrixType> void lu_non_invertible()
{
+ STATIC_CHECK(( internal::is_same<typename FullPivLU<MatrixType>::StorageIndex,int>::value ));
+
typedef typename MatrixType::RealScalar RealScalar;
/* this test covers the following files:
LU.h
@@ -191,6 +193,8 @@ template<typename MatrixType> void lu_partial_piv()
m1.setRandom();
PartialPivLU<MatrixType> plu(m1);
+ STATIC_CHECK(( internal::is_same<typename PartialPivLU<MatrixType>::StorageIndex,int>::value ));
+
VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
m3 = MatrixType::Random(size,size);
diff --git a/test/packetmath.cpp b/test/packetmath.cpp
index 04f93108f..4906f6eb0 100644
--- a/test/packetmath.cpp
+++ b/test/packetmath.cpp
@@ -568,6 +568,7 @@ template<typename Scalar,typename Packet> void packetmath_real()
h.store(data2, internal::plog(h.load(data1)));
VERIFY((numext::isinf)(data2[0]));
}
+ if(PacketTraits::HasSqrt)
{
packet_helper<PacketTraits::HasSqrt,Packet> h;
data1[0] = Scalar(-1.0f);