aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--doc/LeastSquares.dox2
-rw-r--r--doc/TopicLinearAlgebraDecompositions.dox14
-rw-r--r--doc/TutorialLinearAlgebra.dox28
-rw-r--r--doc/examples/TutorialLinAlgSVDSolve.cpp2
4 files changed, 39 insertions, 7 deletions
diff --git a/doc/LeastSquares.dox b/doc/LeastSquares.dox
index e2191a22f..24dfe4b4f 100644
--- a/doc/LeastSquares.dox
+++ b/doc/LeastSquares.dox
@@ -16,7 +16,7 @@ equations is the fastest but least accurate, and the QR decomposition is in betw
\section LeastSquaresSVD Using the SVD decomposition
-The \link JacobiSVD::solve() solve() \endlink method in the JacobiSVD class can be directly used to
+The \link BDCSVD::solve() solve() \endlink method in the BDCSVD class can be directly used to
solve linear squares systems. It is not enough to compute only the singular values (the default for
this class); you also need the singular vectors but the thin SVD decomposition suffices for
computing least squares solutions:
diff --git a/doc/TopicLinearAlgebraDecompositions.dox b/doc/TopicLinearAlgebraDecompositions.dox
index 991f964cc..0965da872 100644
--- a/doc/TopicLinearAlgebraDecompositions.dox
+++ b/doc/TopicLinearAlgebraDecompositions.dox
@@ -4,7 +4,7 @@ namespace Eigen {
This page presents a catalogue of the dense matrix decompositions offered by Eigen.
For an introduction on linear solvers and decompositions, check this \link TutorialLinearAlgebra page \endlink.
-To get an overview of the true relative speed of the different decomposition, check this \link DenseDecompositionBenchmark benchmark \endlink.
+To get an overview of the true relative speed of the different decompositions, check this \link DenseDecompositionBenchmark benchmark \endlink.
\section TopicLinAlgBigTable Catalogue of decompositions offered by Eigen
@@ -114,6 +114,18 @@ To get an overview of the true relative speed of the different decomposition, ch
<tr><th class="inter" colspan="9">\n Singular values and eigenvalues decompositions</th></tr>
<tr>
+ <td>BDCSVD (divide \& conquer)</td>
+ <td>-</td>
+ <td>One of the fastest SVD algorithms</td>
+ <td>Excellent</td>
+ <td>Yes</td>
+ <td>Singular values/vectors, least squares</td>
+ <td>Yes (and does least squares)</td>
+ <td>Excellent</td>
+ <td>Blocked bidiagonalization</td>
+ </tr>
+
+ <tr>
<td>JacobiSVD (two-sided)</td>
<td>-</td>
<td>Slow (but fast for small matrices)</td>
diff --git a/doc/TutorialLinearAlgebra.dox b/doc/TutorialLinearAlgebra.dox
index cb92ceeae..a72724143 100644
--- a/doc/TutorialLinearAlgebra.dox
+++ b/doc/TutorialLinearAlgebra.dox
@@ -73,7 +73,7 @@ depending on your matrix and the trade-off you want to make:
<td>ColPivHouseholderQR</td>
<td>colPivHouseholderQr()</td>
<td>None</td>
- <td>++</td>
+ <td>+</td>
<td>-</td>
<td>+++</td>
</tr>
@@ -86,6 +86,14 @@ depending on your matrix and the trade-off you want to make:
<td>+++</td>
</tr>
<tr class="alt">
+ <td>CompleteOrthogonalDecomposition</td>
+ <td>completeOrthogonalDecomposition()</td>
+ <td>None</td>
+ <td>+</td>
+ <td>-</td>
+ <td>+++</td>
+ </tr>
+ <tr class="alt">
<td>LLT</td>
<td>llt()</td>
<td>Positive definite</td>
@@ -102,14 +110,23 @@ depending on your matrix and the trade-off you want to make:
<td>++</td>
</tr>
<tr class="alt">
+ <td>BDCSVD</td>
+ <td>bdcSvd()</td>
+ <td>None</td>
+ <td>-</td>
+ <td>-</td>
+ <td>+++</td>
+ </tr>
+ <tr class="alt">
<td>JacobiSVD</td>
<td>jacobiSvd()</td>
<td>None</td>
- <td>- -</td>
+ <td>-</td>
<td>- - -</td>
<td>+++</td>
</tr>
</table>
+To get an overview of the true relative speed of the different decompositions, check this \link DenseDecompositionBenchmark benchmark \endlink.
All of these decompositions offer a solve() method that works as in the above example.
@@ -183,8 +200,11 @@ Here is an example:
\section TutorialLinAlgLeastsquares Least squares solving
-The most accurate method to do least squares solving is with a SVD decomposition. Eigen provides one
-as the JacobiSVD class, and its solve() is doing least-squares solving.
+The most accurate method to do least squares solving is with a SVD decomposition.
+Eigen provides two implementations.
+The recommended one is the BDCSVD class, which scale well for large problems
+and automatically fall-back to the JacobiSVD class for smaller problems.
+For both classes, their solve() method is doing least-squares solving.
Here is an example:
<table class="example">
diff --git a/doc/examples/TutorialLinAlgSVDSolve.cpp b/doc/examples/TutorialLinAlgSVDSolve.cpp
index 9fbc031de..f109f04e5 100644
--- a/doc/examples/TutorialLinAlgSVDSolve.cpp
+++ b/doc/examples/TutorialLinAlgSVDSolve.cpp
@@ -11,5 +11,5 @@ int main()
VectorXf b = VectorXf::Random(3);
cout << "Here is the right hand side b:\n" << b << endl;
cout << "The least-squares solution is:\n"
- << A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
+ << A.bdcSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
}