diff options
-rw-r--r-- | Eigen/src/Cholesky/LDLT.h | 170 | ||||
-rw-r--r-- | test/cholesky.cpp | 3 | ||||
-rw-r--r-- | test/main.h | 2 |
3 files changed, 129 insertions, 46 deletions
diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h index 4177000fd..d0fbddcb3 100644 --- a/Eigen/src/Cholesky/LDLT.h +++ b/Eigen/src/Cholesky/LDLT.h @@ -2,6 +2,7 @@ // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// Copyright (C) 2009 Keir Mierle <mierle@gmail.com> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public @@ -29,16 +30,18 @@ * * \class LDLT * - * \brief Robust Cholesky decomposition of a matrix and associated features + * \brief Robust Cholesky decomposition of a matrix * - * \param MatrixType the type of the matrix of which we are computing the LDL^T Cholesky decomposition + * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition * - * This class performs a Cholesky decomposition without square root of a symmetric, positive definite - * matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal - * and D is a diagonal matrix. + * Perform a robust Cholesky decomposition of a symmetric positive semidefinite + * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L + * is lower triangular with a unit diagonal and D is a diagonal matrix. * - * Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more - * stable computation. + * The decomposition uses pivoting to ensure stability, such that if A is + * positive semidefinite (i.e. eigenvalues are non-negative), then L will have + * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root + * on D also stabilizes the computation. * * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, * the strict lower part does not have to store correct values. @@ -52,9 +55,13 @@ template<typename MatrixType> class LDLT typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; + typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; + typedef Matrix<int, 1, MatrixType::RowsAtCompileTime> IntRowVectorType; LDLT(const MatrixType& matrix) - : m_matrix(matrix.rows(), matrix.cols()) + : m_matrix(matrix.rows(), matrix.cols()), + m_p(matrix.rows()), + m_transpositions(matrix.rows()) { compute(matrix); } @@ -62,11 +69,30 @@ template<typename MatrixType> class LDLT /** \returns the lower triangular matrix L */ inline Part<MatrixType, UnitLowerTriangular> matrixL(void) const { return m_matrix; } + /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed, + * representing the P permutation i.e. the permutation of the rows. For its precise meaning, + * see the examples given in the documentation of class LU. + */ + inline const IntColVectorType& permutationP() const + { + return m_p; + } + /** \returns the coefficients of the diagonal matrix D */ inline DiagonalCoeffs<MatrixType> vectorD(void) const { return m_matrix.diagonal(); } /** \returns true if the matrix is positive definite */ - inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; } + inline bool isPositiveDefinite(void) const { return m_rank == m_matrix.rows(); } + + /** \returns the rank of the matrix of which *this is the LDLT decomposition. + * + * \note This is computed at the time of the construction of the LDLT decomposition. This + * method does not perform any further computation. + */ + inline int rank() const + { + return m_rank; + } template<typename RhsDerived, typename ResDerived> bool solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const; @@ -78,14 +104,15 @@ template<typename MatrixType> class LDLT protected: /** \internal - * Used to compute and store the cholesky decomposition A = L D L^* = U^* D U. + * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. * The strict upper part is used during the decomposition, the strict lower * part correspond to the coefficients of L (its diagonal is equal to 1 and * is not stored), and the diagonal entries correspond to D. */ MatrixType m_matrix; - - bool m_isPositiveDefinite; + IntColVectorType m_p; + IntColVectorType m_transpositions; + int m_rank; }; /** Compute / recompute the LLT decomposition A = L D L^* = U^* D U of \a matrix @@ -95,50 +122,92 @@ void LDLT<MatrixType>::compute(const MatrixType& a) { assert(a.rows()==a.cols()); const int size = a.rows(); - m_matrix.resize(size, size); - m_isPositiveDefinite = true; - const RealScalar eps = precision<Scalar>(); + m_rank = size; - if (size<=1) - { - m_matrix = a; + m_matrix = a; + + if (size <= 1) { return; } - // Let's preallocate a temporay vector to evaluate the matrix-vector product into it. - // Unlike the standard LLT decomposition, here we cannot evaluate it to the destination - // matrix because it a sub-row which is not compatible suitable for efficient packet evaluation. - // (at least if we assume the matrix is col-major) - Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size); + RealScalar cutoff, biggest_in_corner; - // Note that, in this algorithm the rows of the strict upper part of m_matrix is used to store - // column vector, thus the strange .conjugate() and .transpose()... + // By using a temorary, packet-aligned products are guarenteed. In the LLT + // case this is unnecessary because the diagonal is included and will always + // have optimal alignment. + Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size); - m_matrix.row(0) = a.row(0).conjugate(); - m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0); - for (int j = 1; j < size; ++j) + for (int j = 0; j < size; ++j) { - RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0)); - m_matrix.coeffRef(j,j) = tmp; + // Find largest element diagonal and pivot it upward for processing next. + int row_of_biggest_in_corner, col_of_biggest_in_corner; + biggest_in_corner = m_matrix.diagonal().end(size-j).cwise().abs() + .maxCoeff(&row_of_biggest_in_corner, + &col_of_biggest_in_corner); + + // The biggest overall is the point of reference to which further diagonals + // are compared; if any diagonal is negligible to machine epsilon compared + // to the largest overall, the algorithm bails. This cutoff is suggested + // in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by + // Nicholas J. Higham. Also see "Accuracy and Stability of Numerical + // Algorithms" page 208, also by Higham. + if(j == 0) cutoff = ei_abs(precision<RealScalar>() * size * biggest_in_corner); - if (tmp < eps) + // Finish early if the matrix is not full rank. + if(biggest_in_corner < cutoff) { - m_isPositiveDefinite = false; - return; + for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i; + m_matrix.block(j, j, size-j, size-j).fill(0); // Zero unreliable data. + m_rank = j; + break; } - int endSize = size-j-1; - if (endSize>0) + row_of_biggest_in_corner += j; + m_transpositions.coeffRef(j) = row_of_biggest_in_corner; + if(j != row_of_biggest_in_corner) { + m_matrix.row(j).swap(m_matrix.row(row_of_biggest_in_corner)); + m_matrix.col(j).swap(m_matrix.col(row_of_biggest_in_corner)); + } + + if (j == 0) { + m_matrix.row(0) = m_matrix.row(0).conjugate(); + m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0); + continue; + } + + RealScalar Djj = ei_real(m_matrix.coeff(j,j) - (m_matrix.row(j).start(j) + * m_matrix.col(j).start(j).conjugate()).coeff(0,0)); + m_matrix.coeffRef(j,j) = Djj; + + // Finish early if the matrix is not full rank or is indefinite. This + // check is deliberately not against eps, so that the decomposition works + // regardless of overall matrix scale. + if(Djj <= 0) + { + for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i; + m_matrix.block(j, j, size-j, size-j).fill(0); // Zero unreliable data. + m_rank = j; + break; + } + + int endSize = size - j - 1; + if (endSize > 0) { _temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j) - * m_matrix.col(j).start(j).conjugate() ).lazy(); + * m_matrix.col(j).start(j).conjugate() ).lazy(); - m_matrix.row(j).end(endSize) = a.row(j).end(endSize).conjugate() + m_matrix.row(j).end(endSize) = m_matrix.row(j).end(endSize).conjugate() - _temporary.end(endSize).transpose(); - m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / tmp; + m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / Djj; } } + + // Reverse applied swaps to get P matrix. + for(int k = 0; k < size; ++k) m_p.coeffRef(k) = k; + for(int k = size-1; k >= 0; --k) { + std::swap(m_p.coeffRef(k), m_p.coeffRef(m_transpositions.coeff(k))); + } } /** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A. @@ -147,7 +216,7 @@ void LDLT<MatrixType>::compute(const MatrixType& a) * \returns true in case of success, false otherwise. * * In other words, it computes \f$ b = A^{-1} b \f$ with - * \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left. + * \f$ P^T{L^{*}}^{-1} D^{-1} L^{-1} P b \f$ from right to left. * * \sa LDLT::solveInPlace(), MatrixBase::ldlt() */ @@ -176,17 +245,30 @@ template<typename Derived> bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const { const int size = m_matrix.rows(); - ei_assert(size==bAndX.rows()); - if (!m_isPositiveDefinite) - return false; + ei_assert(size == bAndX.rows()); + + if (m_rank != size) return false; + + // z = P b + for(int i = 0; i < size; ++i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i)); + + // y = L^-1 z matrixL().solveTriangularInPlace(bAndX); - bAndX = (m_matrix.cwise().inverse().template part<Diagonal>() * bAndX).lazy(); + + // w = D^-1 y + bAndX = (m_matrix.diagonal().cwise().inverse().asDiagonal() * bAndX).lazy(); + + // u = L^-T w m_matrix.adjoint().template part<UnitUpperTriangular>().solveTriangularInPlace(bAndX); + + // x = P^T u + for (int i = size-1; i >= 0; --i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i)); + return true; } /** \cholesky_module - * \returns the Cholesky decomposition without square root of \c *this + * \returns the Cholesky decomposition with full pivoting without square root of \c *this */ template<typename Derived> inline const LDLT<typename MatrixBase<Derived>::PlainMatrixType> diff --git a/test/cholesky.cpp b/test/cholesky.cpp index 2e3353d21..b3e0df438 100644 --- a/test/cholesky.cpp +++ b/test/cholesky.cpp @@ -83,7 +83,8 @@ template<typename MatrixType> void cholesky(const MatrixType& m) { LDLT<SquareMatrixType> ldlt(symm); VERIFY(ldlt.isPositiveDefinite()); - VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint()); + // TODO(keir): This doesn't make sense now that LDLT pivots. + //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint()); ldlt.solve(vecB, &vecX); VERIFY_IS_APPROX(symm * vecX, vecB); ldlt.solve(matB, &matX); diff --git a/test/main.h b/test/main.h index 0356f60bf..489f78bff 100644 --- a/test/main.h +++ b/test/main.h @@ -44,7 +44,7 @@ namespace Eigen #define EI_PP_MAKE_STRING2(S) #S #define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S) - +#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, AlignCols, " ", "\n", "", "", "", "") #ifndef EIGEN_NO_ASSERTION_CHECKING |