aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Keir Mierle <mierle@gmail.com>2009-02-03 17:50:35 +0000
committerGravatar Keir Mierle <mierle@gmail.com>2009-02-03 17:50:35 +0000
commitb9a82be7271f21f78c1bce858bace71407c070c1 (patch)
tree5c2170fe648883a57864019a7ca3433620a9dfe3
parent6c5868cc997c50ca3f61c81ea551e5b234f45cd7 (diff)
Add full pivoting to LDLT decomposition.
-rw-r--r--Eigen/src/Cholesky/LDLT.h170
-rw-r--r--test/cholesky.cpp3
-rw-r--r--test/main.h2
3 files changed, 129 insertions, 46 deletions
diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h
index 4177000fd..d0fbddcb3 100644
--- a/Eigen/src/Cholesky/LDLT.h
+++ b/Eigen/src/Cholesky/LDLT.h
@@ -2,6 +2,7 @@
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@@ -29,16 +30,18 @@
*
* \class LDLT
*
- * \brief Robust Cholesky decomposition of a matrix and associated features
+ * \brief Robust Cholesky decomposition of a matrix
*
- * \param MatrixType the type of the matrix of which we are computing the LDL^T Cholesky decomposition
+ * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
*
- * This class performs a Cholesky decomposition without square root of a symmetric, positive definite
- * matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal
- * and D is a diagonal matrix.
+ * Perform a robust Cholesky decomposition of a symmetric positive semidefinite
+ * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
+ * is lower triangular with a unit diagonal and D is a diagonal matrix.
*
- * Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more
- * stable computation.
+ * The decomposition uses pivoting to ensure stability, such that if A is
+ * positive semidefinite (i.e. eigenvalues are non-negative), then L will have
+ * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
+ * on D also stabilizes the computation.
*
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
@@ -52,9 +55,13 @@ template<typename MatrixType> class LDLT
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
+ typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
+ typedef Matrix<int, 1, MatrixType::RowsAtCompileTime> IntRowVectorType;
LDLT(const MatrixType& matrix)
- : m_matrix(matrix.rows(), matrix.cols())
+ : m_matrix(matrix.rows(), matrix.cols()),
+ m_p(matrix.rows()),
+ m_transpositions(matrix.rows())
{
compute(matrix);
}
@@ -62,11 +69,30 @@ template<typename MatrixType> class LDLT
/** \returns the lower triangular matrix L */
inline Part<MatrixType, UnitLowerTriangular> matrixL(void) const { return m_matrix; }
+ /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
+ * representing the P permutation i.e. the permutation of the rows. For its precise meaning,
+ * see the examples given in the documentation of class LU.
+ */
+ inline const IntColVectorType& permutationP() const
+ {
+ return m_p;
+ }
+
/** \returns the coefficients of the diagonal matrix D */
inline DiagonalCoeffs<MatrixType> vectorD(void) const { return m_matrix.diagonal(); }
/** \returns true if the matrix is positive definite */
- inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
+ inline bool isPositiveDefinite(void) const { return m_rank == m_matrix.rows(); }
+
+ /** \returns the rank of the matrix of which *this is the LDLT decomposition.
+ *
+ * \note This is computed at the time of the construction of the LDLT decomposition. This
+ * method does not perform any further computation.
+ */
+ inline int rank() const
+ {
+ return m_rank;
+ }
template<typename RhsDerived, typename ResDerived>
bool solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const;
@@ -78,14 +104,15 @@ template<typename MatrixType> class LDLT
protected:
/** \internal
- * Used to compute and store the cholesky decomposition A = L D L^* = U^* D U.
+ * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
* The strict upper part is used during the decomposition, the strict lower
* part correspond to the coefficients of L (its diagonal is equal to 1 and
* is not stored), and the diagonal entries correspond to D.
*/
MatrixType m_matrix;
-
- bool m_isPositiveDefinite;
+ IntColVectorType m_p;
+ IntColVectorType m_transpositions;
+ int m_rank;
};
/** Compute / recompute the LLT decomposition A = L D L^* = U^* D U of \a matrix
@@ -95,50 +122,92 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
{
assert(a.rows()==a.cols());
const int size = a.rows();
- m_matrix.resize(size, size);
- m_isPositiveDefinite = true;
- const RealScalar eps = precision<Scalar>();
+ m_rank = size;
- if (size<=1)
- {
- m_matrix = a;
+ m_matrix = a;
+
+ if (size <= 1) {
return;
}
- // Let's preallocate a temporay vector to evaluate the matrix-vector product into it.
- // Unlike the standard LLT decomposition, here we cannot evaluate it to the destination
- // matrix because it a sub-row which is not compatible suitable for efficient packet evaluation.
- // (at least if we assume the matrix is col-major)
- Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);
+ RealScalar cutoff, biggest_in_corner;
- // Note that, in this algorithm the rows of the strict upper part of m_matrix is used to store
- // column vector, thus the strange .conjugate() and .transpose()...
+ // By using a temorary, packet-aligned products are guarenteed. In the LLT
+ // case this is unnecessary because the diagonal is included and will always
+ // have optimal alignment.
+ Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);
- m_matrix.row(0) = a.row(0).conjugate();
- m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0);
- for (int j = 1; j < size; ++j)
+ for (int j = 0; j < size; ++j)
{
- RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0));
- m_matrix.coeffRef(j,j) = tmp;
+ // Find largest element diagonal and pivot it upward for processing next.
+ int row_of_biggest_in_corner, col_of_biggest_in_corner;
+ biggest_in_corner = m_matrix.diagonal().end(size-j).cwise().abs()
+ .maxCoeff(&row_of_biggest_in_corner,
+ &col_of_biggest_in_corner);
+
+ // The biggest overall is the point of reference to which further diagonals
+ // are compared; if any diagonal is negligible to machine epsilon compared
+ // to the largest overall, the algorithm bails. This cutoff is suggested
+ // in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
+ // Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
+ // Algorithms" page 208, also by Higham.
+ if(j == 0) cutoff = ei_abs(precision<RealScalar>() * size * biggest_in_corner);
- if (tmp < eps)
+ // Finish early if the matrix is not full rank.
+ if(biggest_in_corner < cutoff)
{
- m_isPositiveDefinite = false;
- return;
+ for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
+ m_matrix.block(j, j, size-j, size-j).fill(0); // Zero unreliable data.
+ m_rank = j;
+ break;
}
- int endSize = size-j-1;
- if (endSize>0)
+ row_of_biggest_in_corner += j;
+ m_transpositions.coeffRef(j) = row_of_biggest_in_corner;
+ if(j != row_of_biggest_in_corner)
{
+ m_matrix.row(j).swap(m_matrix.row(row_of_biggest_in_corner));
+ m_matrix.col(j).swap(m_matrix.col(row_of_biggest_in_corner));
+ }
+
+ if (j == 0) {
+ m_matrix.row(0) = m_matrix.row(0).conjugate();
+ m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0);
+ continue;
+ }
+
+ RealScalar Djj = ei_real(m_matrix.coeff(j,j) - (m_matrix.row(j).start(j)
+ * m_matrix.col(j).start(j).conjugate()).coeff(0,0));
+ m_matrix.coeffRef(j,j) = Djj;
+
+ // Finish early if the matrix is not full rank or is indefinite. This
+ // check is deliberately not against eps, so that the decomposition works
+ // regardless of overall matrix scale.
+ if(Djj <= 0)
+ {
+ for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
+ m_matrix.block(j, j, size-j, size-j).fill(0); // Zero unreliable data.
+ m_rank = j;
+ break;
+ }
+
+ int endSize = size - j - 1;
+ if (endSize > 0) {
_temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j)
- * m_matrix.col(j).start(j).conjugate() ).lazy();
+ * m_matrix.col(j).start(j).conjugate() ).lazy();
- m_matrix.row(j).end(endSize) = a.row(j).end(endSize).conjugate()
+ m_matrix.row(j).end(endSize) = m_matrix.row(j).end(endSize).conjugate()
- _temporary.end(endSize).transpose();
- m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / tmp;
+ m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / Djj;
}
}
+
+ // Reverse applied swaps to get P matrix.
+ for(int k = 0; k < size; ++k) m_p.coeffRef(k) = k;
+ for(int k = size-1; k >= 0; --k) {
+ std::swap(m_p.coeffRef(k), m_p.coeffRef(m_transpositions.coeff(k)));
+ }
}
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
@@ -147,7 +216,7 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
* \returns true in case of success, false otherwise.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
- * \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
+ * \f$ P^T{L^{*}}^{-1} D^{-1} L^{-1} P b \f$ from right to left.
*
* \sa LDLT::solveInPlace(), MatrixBase::ldlt()
*/
@@ -176,17 +245,30 @@ template<typename Derived>
bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
const int size = m_matrix.rows();
- ei_assert(size==bAndX.rows());
- if (!m_isPositiveDefinite)
- return false;
+ ei_assert(size == bAndX.rows());
+
+ if (m_rank != size) return false;
+
+ // z = P b
+ for(int i = 0; i < size; ++i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
+
+ // y = L^-1 z
matrixL().solveTriangularInPlace(bAndX);
- bAndX = (m_matrix.cwise().inverse().template part<Diagonal>() * bAndX).lazy();
+
+ // w = D^-1 y
+ bAndX = (m_matrix.diagonal().cwise().inverse().asDiagonal() * bAndX).lazy();
+
+ // u = L^-T w
m_matrix.adjoint().template part<UnitUpperTriangular>().solveTriangularInPlace(bAndX);
+
+ // x = P^T u
+ for (int i = size-1; i >= 0; --i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
+
return true;
}
/** \cholesky_module
- * \returns the Cholesky decomposition without square root of \c *this
+ * \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainMatrixType>
diff --git a/test/cholesky.cpp b/test/cholesky.cpp
index 2e3353d21..b3e0df438 100644
--- a/test/cholesky.cpp
+++ b/test/cholesky.cpp
@@ -83,7 +83,8 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
{
LDLT<SquareMatrixType> ldlt(symm);
VERIFY(ldlt.isPositiveDefinite());
- VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
+ // TODO(keir): This doesn't make sense now that LDLT pivots.
+ //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
ldlt.solve(vecB, &vecX);
VERIFY_IS_APPROX(symm * vecX, vecB);
ldlt.solve(matB, &matX);
diff --git a/test/main.h b/test/main.h
index 0356f60bf..489f78bff 100644
--- a/test/main.h
+++ b/test/main.h
@@ -44,7 +44,7 @@ namespace Eigen
#define EI_PP_MAKE_STRING2(S) #S
#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
-
+#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, AlignCols, " ", "\n", "", "", "", "")
#ifndef EIGEN_NO_ASSERTION_CHECKING