aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--unsupported/test/NonLinear.cpp848
1 files changed, 820 insertions, 28 deletions
diff --git a/unsupported/test/NonLinear.cpp b/unsupported/test/NonLinear.cpp
index 74ea2dedb..972c57c2d 100644
--- a/unsupported/test/NonLinear.cpp
+++ b/unsupported/test/NonLinear.cpp
@@ -7,11 +7,55 @@
#include "main.h"
#include <stdio.h>
-#include <math.h>
#include <cminpack.h>
-int fcn(int m, int n, const double *x, double *fvec, double *fjac, int ldfjac, int iflag);
+int fcn_chkder(int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac, int ldfjac, int iflag)
+{
+ /* subroutine fcn for chkder example. */
+
+ int i;
+ double tmp1, tmp2, tmp3, tmp4;
+ double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
+ 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
+
+
+ if (iflag == 0)
+ {
+ /* insert print statements here when nprint is positive. */
+ return 0;
+ }
+
+ if (iflag != 2)
+
+ for (i=1; i<=15; i++)
+ {
+ tmp1 = i;
+ tmp2 = 16 - i;
+ tmp3 = tmp1;
+ if (i > 8) tmp3 = tmp2;
+ fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
+ }
+ else
+ {
+ for (i = 1; i <= 15; i++)
+ {
+ tmp1 = i;
+ tmp2 = 16 - i;
+
+ /* error introduced into next statement for illustration. */
+ /* corrected statement should read tmp3 = tmp1 . */
+
+ tmp3 = tmp2;
+ if (i > 8) tmp3 = tmp2;
+ tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4;
+ fjac[i-1+ ldfjac*(1-1)] = -1.;
+ fjac[i-1+ ldfjac*(2-1)] = tmp1*tmp2/tmp4;
+ fjac[i-1+ ldfjac*(3-1)] = tmp1*tmp3/tmp4;
+ }
+ }
+ return 0;
+}
void testChkder()
{
@@ -32,9 +76,9 @@ void testChkder()
ldfjac = 15;
chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 1, err);
- fcn(m, n, x, fvec, fjac, ldfjac, 1);
- fcn(m, n, x, fvec, fjac, ldfjac, 2);
- fcn(m, n, xp, fvecp, fjac, ldfjac, 1);
+ fcn_chkder(m, n, x, fvec, fjac, ldfjac, 1);
+ fcn_chkder(m, n, x, fvec, fjac, ldfjac, 2);
+ fcn_chkder(m, n, xp, fvecp, fjac, ldfjac, 1);
chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 2, err);
for (i=1; i<=m; i++)
@@ -68,20 +112,95 @@ void testChkder()
for (i=1; i<=m; i++) VERIFY_IS_APPROX(fvec[i-1], fvec_ref[i-1]);
for (i=1; i<=m; i++) VERIFY_IS_APPROX(fvecp[i-1], fvecp_ref[i-1]);
for (i=1; i<=m; i++) VERIFY_IS_APPROX(err[i-1], err_ref[i-1]);
- return;
}
-int fcn(int /*m*/, int /*n*/, const double *x, double *fvec,
- double *fjac, int ldfjac, int iflag)
+
+int fcn_lmder1(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac,
+ int ldfjac, int iflag)
{
- /* subroutine fcn for chkder example. */
+
+/* subroutine fcn for lmder1 example. */
+
+ int i;
+ double tmp1, tmp2, tmp3, tmp4;
+ double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
+ 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
+
+ if (iflag != 2)
+ {
+ for (i = 1; i <= 15; i++)
+ {
+ tmp1 = i;
+ tmp2 = 16 - i;
+ tmp3 = tmp1;
+ if (i > 8) tmp3 = tmp2;
+ fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
+ }
+ }
+ else
+ {
+ for ( i = 1; i <= 15; i++)
+ {
+ tmp1 = i;
+ tmp2 = 16 - i;
+ tmp3 = tmp1;
+ if (i > 8) tmp3 = tmp2;
+ tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4;
+ fjac[i-1 + ldfjac*(1-1)] = -1.;
+ fjac[i-1 + ldfjac*(2-1)] = tmp1*tmp2/tmp4;
+ fjac[i-1 + ldfjac*(3-1)] = tmp1*tmp3/tmp4;
+ }
+ }
+ return 0;
+}
+
+void testLmder1()
+{
+ int j, m, n, ldfjac, info, lwa;
+ int ipvt[3];
+ double tol, fnorm;
+ double x[3], fvec[15], fjac[15*3], wa[30];
+
+ m = 15;
+ n = 3;
+
+/* the following starting values provide a rough fit. */
+
+ x[1-1] = 1.;
+ x[2-1] = 1.;
+ x[3-1] = 1.;
+
+ ldfjac = 15;
+ lwa = 30;
+
+/* set tol to the square root of the machine precision. */
+/* unless high solutions are required, */
+/* this is the recommended setting. */
+
+ tol = sqrt(dpmpar(1));
+
+ info = lmder1(fcn_lmder1, 0, m, n, x, fvec, fjac, ldfjac, tol,
+ ipvt, wa, lwa);
+ fnorm = enorm(m, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 0.09063596);
+ VERIFY(info == 1);
+ double x_ref[] = {0.08241058, 1.133037, 2.343695 };
+ for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
+}
+
+
+int fcn_lmder(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac,
+ int ldfjac, int iflag)
+{
+
+ /* subroutine fcn for lmder example. */
int i;
double tmp1, tmp2, tmp3, tmp4;
double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
-
if (iflag == 0)
{
/* insert print statements here when nprint is positive. */
@@ -89,38 +208,711 @@ int fcn(int /*m*/, int /*n*/, const double *x, double *fvec,
}
if (iflag != 2)
+ {
+ for (i=1; i <= 15; i++)
+ {
+ tmp1 = i;
+ tmp2 = 16 - i;
+ tmp3 = tmp1;
+ if (i > 8) tmp3 = tmp2;
+ fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
+ }
+ }
+ else
+ {
+ for (i=1; i<=15; i++)
+ {
+ tmp1 = i;
+ tmp2 = 16 - i;
+ tmp3 = tmp1;
+ if (i > 8) tmp3 = tmp2;
+ tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4;
+ fjac[i-1 + ldfjac*(1-1)] = -1.;
+ fjac[i-1 + ldfjac*(2-1)] = tmp1*tmp2/tmp4;
+ fjac[i-1 + ldfjac*(3-1)] = tmp1*tmp3/tmp4;
+ };
+ }
+ return 0;
+}
- for (i=1; i<=15; i++)
- {
- tmp1 = i;
- tmp2 = 16 - i;
- tmp3 = tmp1;
- if (i > 8) tmp3 = tmp2;
- fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
- }
+void testLmder()
+{
+ int i, j, m, n, ldfjac, maxfev, mode, nprint, info, nfev, njev;
+ int ipvt[3];
+ double ftol, xtol, gtol, factor, fnorm;
+ double x[3], fvec[15], fjac[15*3], diag[3], qtf[3],
+ wa1[3], wa2[3], wa3[3], wa4[15];
+ double covfac;
+
+ m = 15;
+ n = 3;
+
+/* the following starting values provide a rough fit. */
+
+ x[1-1] = 1.;
+ x[2-1] = 1.;
+ x[3-1] = 1.;
+
+ ldfjac = 15;
+
+ /* set ftol and xtol to the square root of the machine */
+ /* and gtol to zero. unless high solutions are */
+ /* required, these are the recommended settings. */
+
+ ftol = sqrt(dpmpar(1));
+ xtol = sqrt(dpmpar(1));
+ gtol = 0.;
+
+ maxfev = 400;
+ mode = 1;
+ factor = 1.e2;
+ nprint = 0;
+
+ info = lmder(fcn_lmder, 0, m, n, x, fvec, fjac, ldfjac, ftol, xtol, gtol,
+ maxfev, diag, mode, factor, nprint, &nfev, &njev,
+ ipvt, qtf, wa1, wa2, wa3, wa4);
+ fnorm = enorm(m, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 0.09063596);
+
+ VERIFY(nfev==6);
+ VERIFY(njev==5);
+ VERIFY(info==1);
+ double x_ref[] = {0.08241058, 1.133037, 2.343695 };
+ for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
+ ftol = dpmpar(1);
+ covfac = fnorm*fnorm/(m-n);
+ covar(n, fjac, ldfjac, ipvt, ftol, wa1);
+
+ double cov_ref[] = {
+ 0.0001531202, 0.002869941, -0.002656662,
+ 0.002869941, 0.09480935, -0.09098995,
+ -0.002656662, -0.09098995, 0.08778727
+ };
+
+ for (i=1; i<=n; i++)
+ for (j=1; j<=n; j++)
+ VERIFY_IS_APPROX(fjac[(i-1)*ldfjac+j-1]*covfac, cov_ref[(i-1)*3+(j-1)]);
+}
+
+
+int fcn_hybrj1(void * /*p*/, int n, const double *x, double *fvec, double *fjac, int ldfjac,
+ int iflag)
+{
+ /* subroutine fcn for hybrj1 example. */
+
+ int j, k;
+ double one=1, temp, temp1, temp2, three=3, two=2, zero=0, four=4;
+
+ if (iflag != 2)
+ {
+ for (k = 1; k <= n; k++)
+ {
+ temp = (three - two*x[k-1])*x[k-1];
+ temp1 = zero;
+ if (k != 1) temp1 = x[k-1-1];
+ temp2 = zero;
+ if (k != n) temp2 = x[k+1-1];
+ fvec[k-1] = temp - temp1 - two*temp2 + one;
+ }
+ }
+ else
+ {
+ for (k = 1; k <= n; k++)
+ {
+ for (j = 1; j <= n; j++)
+ {
+ fjac[k-1 + ldfjac*(j-1)] = zero;
+ }
+ fjac[k-1 + ldfjac*(k-1)] = three - four*x[k-1];
+ if (k != 1) fjac[k-1 + ldfjac*(k-1-1)] = -one;
+ if (k != n) fjac[k-1 + ldfjac*(k+1-1)] = -two;
+ }
+ }
+ return 0;
+}
+
+
+void testHybrj1()
+{
+ int j, n, ldfjac, info, lwa;
+ double tol, fnorm;
+ double x[9], fvec[9], fjac[9*9], wa[99];
+
+ n = 9;
+
+/* the following starting values provide a rough solution. */
+
+ for (j=1; j<=9; j++)
+ {
+ x[j-1] = -1.;
+ }
+
+ ldfjac = 9;
+ lwa = 99;
+
+/* set tol to the square root of the machine precision. */
+/* unless high solutions are required, */
+/* this is the recommended setting. */
+
+ tol = sqrt(dpmpar(1));
+
+ info = hybrj1(fcn_hybrj1, 0, n, x, fvec, fjac, ldfjac, tol, wa, lwa);
+
+ fnorm = enorm(n, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 1.192636e-08);
+ VERIFY(info==1);
+ double x_ref[] = {
+ -0.5706545, -0.6816283, -0.7017325,
+ -0.7042129, -0.701369, -0.6918656,
+ -0.665792, -0.5960342, -0.4164121
+ };
+ for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
+}
+
+int fcn_hybrj(void * /*p*/, int n, const double *x, double *fvec, double *fjac, int ldfjac,
+ int iflag)
+{
+
+ /* subroutine fcn for hybrj example. */
+
+ int j, k;
+ double one=1, temp, temp1, temp2, three=3, two=2, zero=0, four=4;
+
+ if (iflag == 0)
+ {
+ /* insert print statements here when nprint is positive. */
+ return 0;
+ }
+
+ if (iflag != 2)
+ {
+ for (k=1; k <= n; k++)
+ {
+ temp = (three - two*x[k-1])*x[k-1];
+ temp1 = zero;
+ if (k != 1) temp1 = x[k-1-1];
+ temp2 = zero;
+ if (k != n) temp2 = x[k+1-1];
+ fvec[k-1] = temp - temp1 - two*temp2 + one;
+ }
+ }
+ else
+ {
+ for (k = 1; k <= n; k++)
+ {
+ for (j=1; j <= n; j++)
+ {
+ fjac[k-1 + ldfjac*(j-1)] = zero;
+ }
+ fjac[k-1 + ldfjac*(k-1)] = three - four*x[k-1];
+ if (k != 1) fjac[k-1 + ldfjac*(k-1-1)] = -one;
+ if (k != n) fjac[k-1 + ldfjac*(k+1-1)] = -two;
+ }
+ }
+ return 0;
+}
+
+void testHybrj()
+{
+
+ int j, n, ldfjac, maxfev, mode, nprint, info, nfev, njev, lr;
+ double xtol, factor, fnorm;
+ double x[9], fvec[9], fjac[9*9], diag[9], r[45], qtf[9],
+ wa1[9], wa2[9], wa3[9], wa4[9];
+
+ n = 9;
+
+/* the following starting values provide a rough solution. */
+
+ for (j=1; j<=9; j++)
+ {
+ x[j-1] = -1.;
+ }
+
+ ldfjac = 9;
+ lr = 45;
+
+/* set xtol to the square root of the machine precision. */
+/* unless high solutions are required, */
+/* this is the recommended setting. */
+
+ xtol = sqrt(dpmpar(1));
+
+ maxfev = 1000;
+ mode = 2;
+ for (j=1; j<=9; j++)
+ {
+ diag[j-1] = 1.;
+ }
+ factor = 1.e2;
+ nprint = 0;
+
+ info = hybrj(fcn_hybrj, 0, n, x, fvec, fjac, ldfjac, xtol, maxfev, diag,
+ mode, factor, nprint, &nfev, &njev, r, lr, qtf,
+ wa1, wa2, wa3, wa4);
+ fnorm = enorm(n, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 1.192636e-08);
+ VERIFY(nfev==11);
+ VERIFY(njev==1);
+ VERIFY(info==1);
+
+ double x_ref[] = {
+ -0.5706545, -0.6816283, -0.7017325,
+ -0.7042129, -0.701369, -0.6918656,
+ -0.665792, -0.5960342, -0.4164121
+ };
+ for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
+ printf("\n");
+}
+
+int fcn_hybrd1(void * /*p*/, int n, const double *x, double *fvec, int /*iflag*/)
+{
+/* subroutine fcn for hybrd1 example. */
+
+ int k;
+ double one=1, temp, temp1, temp2, three=3, two=2, zero=0;
+
+ for (k=1; k <= n; k++)
+ {
+ temp = (three - two*x[k-1])*x[k-1];
+ temp1 = zero;
+ if (k != 1) temp1 = x[k-1-1];
+ temp2 = zero;
+ if (k != n) temp2 = x[k+1-1];
+ fvec[k-1] = temp - temp1 - two*temp2 + one;
+ }
+ return 0;
+}
+
+void testHybrd1()
+{
+ int j, n, info, lwa;
+ double tol, fnorm;
+ double x[9], fvec[9], wa[180];
+
+ n = 9;
+
+/* the following starting values provide a rough solution. */
+
+ for (j=1; j<=9; j++)
+ {
+ x[j-1] = -1.;
+ }
+
+ lwa = 180;
+
+/* set tol to the square root of the machine precision. */
+/* unless high solutions are required, */
+/* this is the recommended setting. */
+
+ tol = sqrt(dpmpar(1));
+ info = hybrd1(fcn_hybrd1, 0, n, x, fvec, tol, wa, lwa);
+ fnorm = enorm(n, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 1.192636e-08);
+ VERIFY(info==1);
+
+ double x_ref[] = {
+ -0.5706545, -0.6816283, -0.7017325,
+ -0.7042129, -0.701369, -0.6918656,
+ -0.665792, -0.5960342, -0.4164121
+ };
+ for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
+}
+
+int fcn_hybrd(void * /*p*/, int n, const double *x, double *fvec, int iflag)
+{
+ /* subroutine fcn for hybrd example. */
+
+ int k;
+ double one=1, temp, temp1, temp2, three=3, two=2, zero=0;
+
+ if (iflag == 0)
+ {
+ /* insert print statements here when nprint is positive. */
+ return 0;
+ }
+ for (k=1; k<=n; k++)
+ {
+
+ temp = (three - two*x[k-1])*x[k-1];
+ temp1 = zero;
+ if (k != 1) temp1 = x[k-1-1];
+ temp2 = zero;
+ if (k != n) temp2 = x[k+1-1];
+ fvec[k-1] = temp - temp1 - two*temp2 + one;
+ }
+ return 0;
+}
+
+void testHybrd()
+{
+ int j, n, maxfev, ml, mu, mode, nprint, info, nfev, ldfjac, lr;
+ double xtol, epsfcn, factor, fnorm;
+ double x[9], fvec[9], diag[9], fjac[9*9], r[45], qtf[9],
+ wa1[9], wa2[9], wa3[9], wa4[9];
+
+ n = 9;
+
+/* the following starting values provide a rough solution. */
+
+ for (j=1; j<=9; j++)
+ {
+ x[j-1] = -1.;
+ }
+
+ ldfjac = 9;
+ lr = 45;
+
+/* set xtol to the square root of the machine precision. */
+/* unless high solutions are required, */
+/* this is the recommended setting. */
+
+ xtol = sqrt(dpmpar(1));
+
+ maxfev = 2000;
+ ml = 1;
+ mu = 1;
+ epsfcn = 0.;
+ mode = 2;
+ for (j=1; j<=9; j++)
+ {
+ diag[j-1] = 1.;
+ }
+
+ factor = 1.e2;
+ nprint = 0;
+
+ info = hybrd(fcn_hybrd, 0, n, x, fvec, xtol, maxfev, ml, mu, epsfcn,
+ diag, mode, factor, nprint, &nfev,
+ fjac, ldfjac, r, lr, qtf, wa1, wa2, wa3, wa4);
+ fnorm = enorm(n, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 1.192636e-08);
+ VERIFY(nfev==14);
+ VERIFY(info==1);
+ double x_ref[] = {
+ -0.5706545, -0.6816283, -0.7017325,
+ -0.7042129, -0.701369, -0.6918656,
+ -0.665792, -0.5960342, -0.4164121
+ };
+ for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
+}
+
+int fcn_lmstr1(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag)
+{
+ /* subroutine fcn for lmstr1 example. */
+ int i;
+ double tmp1, tmp2, tmp3, tmp4;
+ double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
+ 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
+
+ if (iflag < 2)
+ {
+ for (i=1; i<=15; i++)
+ {
+ tmp1=i;
+ tmp2 = 16-i;
+ tmp3 = tmp1;
+ if (i > 8) tmp3 = tmp2;
+ fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
+ }
+ }
else
{
+ i = iflag - 1;
+ tmp1 = i;
+ tmp2 = 16 - i;
+ tmp3 = tmp1;
+ if (i > 8) tmp3 = tmp2;
+ tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4;
+ fjrow[1-1] = -1;
+ fjrow[2-1] = tmp1*tmp2/tmp4;
+ fjrow[3-1] = tmp1*tmp3/tmp4;
+ }
+ return 0;
+}
+
+void testLmstr1()
+{
+ int m, n, ldfjac, info, lwa, ipvt[3];
+ double tol, fnorm;
+ double x[30], fvec[15], fjac[9], wa[30];
+
+ m = 15;
+ n = 3;
+
+ /* the following starting values provide a rough fit. */
+
+ x[0] = 1.;
+ x[1] = 1.;
+ x[2] = 1.;
+
+ ldfjac = 3;
+ lwa = 30;
+
+ /* set tol to the square root of the machine precision.
+ unless high precision solutions are required,
+ this is the recommended setting. */
+
+ tol = sqrt(dpmpar(1));
+
+ info = lmstr1(fcn_lmstr1, 0, m, n,
+ x, fvec, fjac, ldfjac,
+ tol, ipvt, wa, lwa);
+
+ fnorm = enorm(m, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 0.09063596);
+ VERIFY(info==1);
+ double x_ref[] = {0.08241058, 1.133037, 2.343695 };
+ for (m=1; m<=3; m++) VERIFY_IS_APPROX(x[m-1], x_ref[m-1]);
+}
+
+int fcn_lmstr(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag)
+{
+
+ /* subroutine fcn for lmstr example. */
+
+ int i;
+ double tmp1, tmp2, tmp3, tmp4;
+ double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
+ 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
+
+ if (iflag == 0)
+ {
+ /* insert print statements here when nprint is positive. */
+ return 0;
+ }
+ if (iflag < 2)
+ {
for (i = 1; i <= 15; i++)
{
tmp1 = i;
tmp2 = 16 - i;
-
- /* error introduced into next statement for illustration. */
- /* corrected statement should read tmp3 = tmp1 . */
-
- tmp3 = tmp2;
+ tmp3 = tmp1;
if (i > 8) tmp3 = tmp2;
- tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4;
- fjac[i-1+ ldfjac*(1-1)] = -1.;
- fjac[i-1+ ldfjac*(2-1)] = tmp1*tmp2/tmp4;
- fjac[i-1+ ldfjac*(3-1)] = tmp1*tmp3/tmp4;
- }
+ fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
+}
+ }
+else
+ {
+ i = iflag - 1;
+ tmp1 = i;
+ tmp2 = 16 - i;
+ tmp3 = tmp1;
+ if (i > 8) tmp3 = tmp2;
+ tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4;
+ fjrow[1-1] = -1.;
+ fjrow[2-1] = tmp1*tmp2/tmp4;
+ fjrow[3-1] = tmp1*tmp3/tmp4;
+ }
+ return 0;
+}
+
+void testLmstr()
+{
+ int j, m, n, ldfjac, maxfev, mode, nprint, info, nfev, njev;
+ int ipvt[3];
+ double ftol, xtol, gtol, factor, fnorm;
+ double x[3], fvec[15], fjac[3*3], diag[3], qtf[3],
+ wa1[3], wa2[3], wa3[3], wa4[15];
+
+ m = 15;
+ n = 3;
+
+ /* the following starting values provide a rough fit. */
+
+ x[1-1] = 1.;
+ x[2-1] = 1.;
+ x[3-1] = 1.;
+
+ ldfjac = 3;
+
+ /* set ftol and xtol to the square root of the machine */
+ /* and gtol to zero. unless high solutions are */
+ /* required, these are the recommended settings. */
+
+ ftol = sqrt(dpmpar(1));
+ xtol = sqrt(dpmpar(1));
+ gtol = 0.;
+
+ maxfev = 400;
+ mode = 1;
+ factor = 1.e2;
+ nprint = 0;
+
+ info = lmstr(fcn_lmstr, 0, m, n, x, fvec, fjac, ldfjac, ftol, xtol, gtol,
+ maxfev, diag, mode, factor, nprint, &nfev, &njev,
+ ipvt, qtf, wa1, wa2, wa3, wa4);
+ fnorm = enorm(m, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 0.09063596);
+ VERIFY(nfev==6);
+ VERIFY(njev==5);
+ VERIFY(info==1);
+
+ double x_ref[] = {0.08241058, 1.133037, 2.343695 };
+ for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
+}
+
+int fcn_lmdif1(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, int /*iflag*/)
+{
+ /* function fcn for lmdif1 example */
+
+ int i;
+ double tmp1,tmp2,tmp3;
+ double y[15]={1.4e-1,1.8e-1,2.2e-1,2.5e-1,2.9e-1,3.2e-1,3.5e-1,3.9e-1,
+ 3.7e-1,5.8e-1,7.3e-1,9.6e-1,1.34e0,2.1e0,4.39e0};
+
+ for (i=0; i<15; i++)
+ {
+ tmp1 = i+1;
+ tmp2 = 15 - i;
+ tmp3 = tmp1;
+
+ if (i >= 8) tmp3 = tmp2;
+ fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3));
+ }
+ return 0;
+}
+
+void testLmdif1()
+{
+ int m, n, info, lwa, iwa[3];
+ double tol, fnorm, x[3], fvec[15], wa[75];
+
+ m = 15;
+ n = 3;
+
+ /* the following starting values provide a rough fit. */
+
+ x[0] = 1.e0;
+ x[1] = 1.e0;
+ x[2] = 1.e0;
+
+ lwa = 75;
+
+ /* set tol to the square root of the machine precision. unless high
+ precision solutions are required, this is the recommended
+ setting. */
+
+ tol = sqrt(dpmpar(1));
+
+ info = lmdif1(fcn_lmdif1, 0, m, n, x, fvec, tol, iwa, wa, lwa);
+
+ fnorm = enorm(m, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 0.09063596);
+ VERIFY(info==1);
+ double x_ref[] = {0.0824106, 1.1330366, 2.3436947 };
+ int j;
+ for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
+
+}
+
+int fcn_lmdif(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, int iflag)
+{
+
+/* subroutine fcn for lmdif example. */
+
+ int i;
+ double tmp1, tmp2, tmp3;
+ double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1,
+ 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39};
+
+ if (iflag == 0)
+ {
+ /* insert print statements here when nprint is positive. */
+ return 0;
+ }
+ for (i = 1; i <= 15; i++)
+ {
+ tmp1 = i;
+ tmp2 = 16 - i;
+ tmp3 = tmp1;
+ if (i > 8) tmp3 = tmp2;
+ fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3));
}
return 0;
}
+void testLmdif()
+{
+ int i, j, m, n, maxfev, mode, nprint, info, nfev, ldfjac;
+ int ipvt[3];
+ double ftol, xtol, gtol, epsfcn, factor, fnorm;
+ double x[3], fvec[15], diag[3], fjac[15*3], qtf[3],
+ wa1[3], wa2[3], wa3[3], wa4[15];
+ double covfac;
+
+ m = 15;
+ n = 3;
+
+/* the following starting values provide a rough fit. */
+
+ x[1-1] = 1.;
+ x[2-1] = 1.;
+ x[3-1] = 1.;
+
+ ldfjac = 15;
+
+ /* set ftol and xtol to the square root of the machine */
+ /* and gtol to zero. unless high solutions are */
+ /* required, these are the recommended settings. */
+
+ ftol = sqrt(dpmpar(1));
+ xtol = sqrt(dpmpar(1));
+ gtol = 0.;
+
+ maxfev = 800;
+ epsfcn = 0.;
+ mode = 1;
+ factor = 1.e2;
+ nprint = 0;
+
+ info = lmdif(fcn_lmdif, 0, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn,
+ diag, mode, factor, nprint, &nfev, fjac, ldfjac,
+ ipvt, qtf, wa1, wa2, wa3, wa4);
+
+ fnorm = enorm(m, fvec);
+
+ VERIFY_IS_APPROX(fnorm, 0.09063596);
+ VERIFY(nfev==21);
+ VERIFY(info==1);
+
+ double x_ref[] = {0.08241058, 1.133037, 2.343695 };
+ for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]);
+
+ ftol = dpmpar(1);
+ covfac = fnorm*fnorm/(m-n);
+ covar(n, fjac, ldfjac, ipvt, ftol, wa1);
+
+ double cov_ref[] = {
+ 0.0001531202, 0.002869942, -0.002656662,
+ 0.002869942, 0.09480937, -0.09098997,
+ -0.002656662, -0.09098997, 0.08778729
+ };
+
+ for (i=1; i<=n; i++)
+ for (j=1; j<=n; j++)
+ VERIFY_IS_APPROX(fjac[(i-1)*ldfjac+j-1]*covfac, cov_ref[(i-1)*3+(j-1)]);
+}
void test_NonLinear()
{
CALL_SUBTEST(testChkder());
+ CALL_SUBTEST(testLmder1());
+ CALL_SUBTEST(testLmder());
+ CALL_SUBTEST(testHybrj1());
+ CALL_SUBTEST(testHybrj());
+ CALL_SUBTEST(testHybrd1());
+ CALL_SUBTEST(testHybrd());
+ CALL_SUBTEST(testLmstr1());
+ CALL_SUBTEST(testLmstr());
+ CALL_SUBTEST(testLmdif1());
+ CALL_SUBTEST(testLmdif());
}