aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--doc/C02_TutorialMatrixArithmetic.dox18
-rw-r--r--doc/C04_TutorialBlockOperations.dox195
-rw-r--r--doc/C07_TutorialReductionsVisitorsBroadcasting.dox2
-rw-r--r--doc/examples/Tutorial_BlockOperations_block_assignment.cpp23
-rw-r--r--doc/examples/Tutorial_BlockOperations_colrow.cpp11
-rw-r--r--doc/examples/Tutorial_BlockOperations_corner.cpp20
-rw-r--r--doc/examples/Tutorial_BlockOperations_print_block.cpp20
-rw-r--r--doc/examples/Tutorial_BlockOperations_vector.cpp20
8 files changed, 127 insertions, 182 deletions
diff --git a/doc/C02_TutorialMatrixArithmetic.dox b/doc/C02_TutorialMatrixArithmetic.dox
index df2360d40..d076c8048 100644
--- a/doc/C02_TutorialMatrixArithmetic.dox
+++ b/doc/C02_TutorialMatrixArithmetic.dox
@@ -43,7 +43,7 @@ also have the same \c Scalar type, as Eigen doesn't do automatic type promotion.
Example: \include tut_arithmetic_add_sub.cpp
</td>
<td>
-Output: \include tut_arithmetic_add_sub.out
+Output: \verbinclude tut_arithmetic_add_sub.out
</td></tr></table>
\section TutorialArithmeticScalarMulDiv Scalar multiplication and division
@@ -59,7 +59,7 @@ Multiplication and division by a scalar is very simple too. The operators at han
Example: \include tut_arithmetic_scalar_mul_div.cpp
</td>
<td>
-Output: \include tut_arithmetic_scalar_mul_div.out
+Output: \verbinclude tut_arithmetic_scalar_mul_div.out
</td></tr></table>
@@ -93,7 +93,7 @@ The transpose \f$ a^T \f$, conjugate \f$ \bar{a} \f$, and adjoint (i.e., conjuga
Example: \include tut_arithmetic_transpose_conjugate.cpp
</td>
<td>
-Output: \include tut_arithmetic_transpose_conjugate.out
+Output: \verbinclude tut_arithmetic_transpose_conjugate.out
</td></tr></table>
For real matrices, \c conjugate() is a no-operation, and so \c adjoint() is 100% equivalent to \c transpose().
@@ -103,7 +103,7 @@ As for basic arithmetic operators, \c transpose() and \c adjoint() simply return
Example: \include tut_arithmetic_transpose_aliasing.cpp
</td>
<td>
-Output: \include tut_arithmetic_transpose_aliasing.out
+Output: \verbinclude tut_arithmetic_transpose_aliasing.out
</td></tr></table>
This is the so-called \ref TopicAliasing "aliasing issue". In "debug mode", i.e., when \ref TopicAssertions "assertions" have not been disabled, such common pitfalls are automatically detected.
@@ -112,7 +112,7 @@ For \em in-place transposition, as for instance in <tt>a = a.transpose()</tt>, s
Example: \include tut_arithmetic_transpose_inplace.cpp
</td>
<td>
-Output: \include tut_arithmetic_transpose_inplace.out
+Output: \verbinclude tut_arithmetic_transpose_inplace.out
</td></tr></table>
There is also the \link MatrixBase::adjointInPlace() adjointInPlace()\endlink function for complex matrices.
@@ -129,7 +129,7 @@ two operators:
Example: \include tut_arithmetic_matrix_mul.cpp
</td>
<td>
-Output: \include tut_arithmetic_matrix_mul.out
+Output: \verbinclude tut_arithmetic_matrix_mul.out
</td></tr></table>
Note: if you read the above paragraph on expression templates and are worried that doing \c m=m*m might cause
@@ -154,7 +154,7 @@ The above-discussed \c operator* cannot be used to compute dot and cross product
Example: \include tut_arithmetic_dot_cross.cpp
</td>
<td>
-Output: \include tut_arithmetic_dot_cross.out
+Output: \verbinclude tut_arithmetic_dot_cross.out
</td></tr></table>
Remember that cross product is only for vectors of size 3. Dot product is for vectors of any sizes.
@@ -168,7 +168,7 @@ Eigen also provides some reduction operations to reduce a given matrix or vector
Example: \include tut_arithmetic_redux_basic.cpp
</td>
<td>
-Output: \include tut_arithmetic_redux_basic.out
+Output: \verbinclude tut_arithmetic_redux_basic.out
</td></tr></table>
The \em trace of a matrix, as returned by the function \link MatrixBase::trace() trace()\endlink, is the sum of the diagonal coefficients and can also be computed as efficiently using <tt>a.diagonal().sum()</tt>, as we will see later on.
@@ -179,7 +179,7 @@ There also exist variants of the \c minCoeff and \c maxCoeff functions returning
Example: \include tut_arithmetic_redux_minmax.cpp
</td>
<td>
-Output: \include tut_arithmetic_redux_minmax.out
+Output: \verbinclude tut_arithmetic_redux_minmax.out
</td></tr></table>
diff --git a/doc/C04_TutorialBlockOperations.dox b/doc/C04_TutorialBlockOperations.dox
index 70773a463..b45cbfbc8 100644
--- a/doc/C04_TutorialBlockOperations.dox
+++ b/doc/C04_TutorialBlockOperations.dox
@@ -13,21 +13,22 @@ provided that you let your compiler optimize.
\b Table \b of \b contents
- \ref TutorialBlockOperationsUsing
- - \ref TutorialBlockOperationsSyntax
- - \ref TutorialBlockOperationsSyntaxColumnRows
- - \ref TutorialBlockOperationsSyntaxCorners
+ - \ref TutorialBlockOperationsSyntaxColumnRows
+ - \ref TutorialBlockOperationsSyntaxCorners
+ - \ref TutorialBlockOperationsSyntaxVectors
+
\section TutorialBlockOperationsUsing Using block operations
The most general block operation in Eigen is called \link DenseBase::block() .block() \endlink.
-This function returns a block of size <tt>(p,q)</tt> whose origin is at <tt>(i,j)</tt> by using
-the following syntax:
+This function returns a block of size <tt>(p,q)</tt> whose origin is at <tt>(i,j)</tt>.
+There are two versions, whose syntax is as follows:
<table class="tutorial_code" align="center">
-<tr><td align="center">\b Block \b operation</td>
-<td align="center">Default \b version</td>
+<tr><td align="center">\b %Block \b operation</td>
+<td align="center">Default version</td>
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
-<tr><td>Block of size <tt>(p,q)</tt>, starting at <tt>(i,j)</tt></td>
+<tr><td>%Block of size <tt>(p,q)</tt>, starting at <tt>(i,j)</tt></td>
<td>\code
matrix.block(i,j,p,q);\endcode </td>
<td>\code
@@ -35,7 +36,15 @@ matrix.block<p,q>(i,j);\endcode </td>
</tr>
</table>
-Therefore, if we want to print the values of a block inside a matrix we can simply write:
+The default version is a method which takes four arguments. It can always be used. The optimized version
+takes two template arguments (the size of the block) and two normal arguments (the position of the block).
+It can only be used if the size of the block is known at compile time, but it may be faster than the
+non-optimized version, especially if the size of the block is small. Both versions can be used on fixed-size
+and dynamic-size matrices and arrays.
+
+The following program uses the default and optimized versions to print the values of several blocks inside a
+matrix.
+
<table class="tutorial_code"><tr><td>
\include Tutorial_BlockOperations_print_block.cpp
</td>
@@ -44,10 +53,15 @@ Output:
\verbinclude Tutorial_BlockOperations_print_block.out
</td></tr></table>
+In the above example the \link DenseBase::block() .block() \endlink function was employed
+to read the values inside matrix \p m . However, blocks can also be used as lvalues, meaning that you can
+assign to a block.
-In the previous example the \link DenseBase::block() .block() \endlink function was employed
-to read the values inside matrix \p m . Blocks can also be used to perform operations and
-assignments within matrices or arrays of different size:
+This is illustrated in the following example, which uses arrays instead of matrices. The coefficients of the
+5-by-5 array \c n are first all set to 0.6, but then the 3-by-3 block in the middle is set to the values in
+\c m . The penultimate line shows that blocks can be combined with matrices and arrays to create more complex
+expressions. Blocks of an array are an array expression, and thus the multiplication here is coefficient-wise
+multiplication.
<table class="tutorial_code"><tr><td>
\include Tutorial_BlockOperations_block_assignment.cpp
@@ -57,55 +71,38 @@ Output:
\verbinclude Tutorial_BlockOperations_block_assignment.out
</td></tr></table>
+The \link DenseBase::block() .block() \endlink method is used for general block operations, but there are
+other methods for special cases. These are described in the rest of this page.
-Blocks can also be combined with matrices and arrays to create more complex expressions:
-\code
- MatrixXf m(3,3), n(2,2);
- MatrixXf p(3,3);
-
- m.block(0,0,2,2) = m.block(0,0,2,2) * n + p.block(1,1,2,2);
-\endcode
+\section TutorialBlockOperationsSyntaxColumnRows Columns and rows
-It is important to point out that \link DenseBase::block() .block() \endlink is the
-general case for a block operation but there are many other useful block operations,
-as described in the next section.
-
-\section TutorialBlockOperationsSyntax Block operation syntax
-The following tables show a summary of Eigen's block operations and how they are applied to
-fixed- and dynamic-sized Eigen objects.
-
-\subsection TutorialBlockOperationsSyntaxColumnRows Columns and rows
-Other extremely useful block operations are \link DenseBase::col() .col() \endlink and
-\link DenseBase::row() .row() \endlink which provide access to a
-specific row or column. This is a special case in the sense that the syntax for fixed- and
-dynamic-sized objects is exactly the same:
+Individual columns and rows are special cases of blocks. Eigen provides methods to easily access them:
+\link DenseBase::col() .col() \endlink and \link DenseBase::row() .row()\endlink. There is no syntax variant
+for an optimized version.
<table class="tutorial_code" align="center">
-<tr><td align="center">\b Block \b operation</td>
+<tr><td align="center">\b %Block \b operation</td>
<td align="center">Default version</td>
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
<tr><td>i<sup>th</sup> row
\link DenseBase::row() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.row(i);\endcode </td>
+matrix.row(i);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.row(i);\endcode </td>
+matrix.row(i);\endcode </td>
</tr>
<tr><td>j<sup>th</sup> column
\link DenseBase::col() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.col(j);\endcode </td>
+matrix.col(j);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.col(j);\endcode </td>
+matrix.col(j);\endcode </td>
</tr>
</table>
-A simple example demonstrating these feature follows:
+The argument for \p col() and \p row() is the index of the column or row to be accessed, starting at
+0. Therefore, \p col(0) will access the first column and \p col(1) the second one.
<table class="tutorial_code"><tr><td>
C++ code:
@@ -113,94 +110,83 @@ C++ code:
</td>
<td>
Output:
-\include Tutorial_BlockOperations_colrow.out
+\verbinclude Tutorial_BlockOperations_colrow.out
</td></tr></table>
-\b NOTE: the argument for \p col() and \p row() is the index of the column or row to be accessed,
-starting at 0. Therefore, \p col(0) will access the first column and \p col(1) the second one.
+\section TutorialBlockOperationsSyntaxCorners Corner-related operations
+
+Eigen also provides special methods for blocks that are flushed against one of the corners or sides of a
+matrix or array. For instance, \link DenseBase::topLeftCorner() .topLeftCorner() \endlink can be used to refer
+to a block in the top-left corner of a matrix. Use <tt>matrix.topLeftCorner(p,q)</tt> to access the block
+consisting of the coefficients <tt>matrix(i,j)</tt> with \c i &lt; \c p and \c j &lt; \c q. As an other
+example, blocks consisting of whole rows flushed against the top side of the matrix can be accessed by
+\link DenseBase::topRows() .topRows() \endlink.
+The different possibilities are summarized in the following table:
-\subsection TutorialBlockOperationsSyntaxCorners Corner-related operations
<table class="tutorial_code" align="center">
-<tr><td align="center">\b Block \b operation</td>
+<tr><td align="center">\b %Block \b operation</td>
<td align="center">Default version</td>
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
<tr><td>Top-left p by q block \link DenseBase::topLeftCorner() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.topLeftCorner(p,q);\endcode </td>
+matrix.topLeftCorner(p,q);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.topLeftCorner<p,q>();\endcode </td>
+matrix.topLeftCorner<p,q>();\endcode </td>
</tr>
<tr><td>Bottom-left p by q block
\link DenseBase::bottomLeftCorner() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.bottomLeftCorner(p,q);\endcode </td>
+matrix.bottomLeftCorner(p,q);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.bottomLeftCorner<p,q>();\endcode </td>
+matrix.bottomLeftCorner<p,q>();\endcode </td>
</tr>
<tr><td>Top-right p by q block
\link DenseBase::topRightCorner() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.topRightCorner(p,q);\endcode </td>
+matrix.topRightCorner(p,q);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.topRightCorner<p,q>();\endcode </td>
+matrix.topRightCorner<p,q>();\endcode </td>
</tr>
<tr><td>Bottom-right p by q block
\link DenseBase::bottomRightCorner() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.bottomRightCorner(p,q);\endcode </td>
+matrix.bottomRightCorner(p,q);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.bottomRightCorner<p,q>();\endcode </td>
+matrix.bottomRightCorner<p,q>();\endcode </td>
</tr>
-<tr><td>Block containing the first q rows
+<tr><td>%Block containing the first q rows
\link DenseBase::topRows() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.topRows(q);\endcode </td>
+matrix.topRows(q);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.topRows<q>();\endcode </td>
+matrix.topRows<q>();\endcode </td>
</tr>
-<tr><td>Block containing the last q rows
+<tr><td>%Block containing the last q rows
\link DenseBase::bottomRows() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.bottomRows(q);\endcode </td>
+matrix.bottomRows(q);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.bottomRows<q>();\endcode </td>
+matrix.bottomRows<q>();\endcode </td>
</tr>
-<tr><td>Block containing the first p columns
+<tr><td>%Block containing the first p columns
\link DenseBase::leftCols() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.leftCols(p);\endcode </td>
+matrix.leftCols(p);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.leftCols<p>();\endcode </td>
+matrix.leftCols<p>();\endcode </td>
</tr>
-<tr><td>Block containing the last q columns
+<tr><td>%Block containing the last q columns
\link DenseBase::rightCols() * \endlink</td>
<td>\code
-MatrixXf m;
-std::cout << m.rightCols(q);\endcode </td>
+matrix.rightCols(q);\endcode </td>
<td>\code
-Matrix3f m;
-std::cout << m.rightCols<q>();\endcode </td>
+matrix.rightCols<q>();\endcode </td>
</tr>
</table>
-
-Here is a simple example showing the power of the operations presented above:
+Here is a simple example illustrating the use of the operations presented above:
<table class="tutorial_code"><tr><td>
C++ code:
@@ -208,49 +194,38 @@ C++ code:
</td>
<td>
Output:
-\include Tutorial_BlockOperations_corner.out
+\verbinclude Tutorial_BlockOperations_corner.out
</td></tr></table>
+\section TutorialBlockOperationsSyntaxVectors Block operations for vectors
-
-
-
-
-
-\subsection TutorialBlockOperationsSyntaxVectors Block operations for vectors
-Eigen also provides a set of block operations designed specifically for vectors:
+Eigen also provides a set of block operations designed specifically for vectors and one-dimensional arrays:
<table class="tutorial_code" align="center">
-<tr><td align="center">\b Block \b operation</td>
+<tr><td align="center">\b %Block \b operation</td>
<td align="center">Default version</td>
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
-<tr><td>Block containing the first \p n elements
+<tr><td>%Block containing the first \p n elements
\link DenseBase::head() * \endlink</td>
<td>\code
-VectorXf v;
-std::cout << v.head(n);\endcode </td>
+vector.head(n);\endcode </td>
<td>\code
-Vector3f v;
-std::cout << v.head<n>();\endcode </td>
+vector.head<n>();\endcode </td>
</tr>
-<tr><td>Block containing the last \p n elements
+<tr><td>%Block containing the last \p n elements
\link DenseBase::tail() * \endlink</td>
<td>\code
-VectorXf v;
-std::cout << v.tail(n);\endcode </td>
+vector.tail(n);\endcode </td>
<td>\code
-Vector3f m;
-std::cout << v.tail<n>();\endcode </td>
+vector.tail<n>();\endcode </td>
</tr>
-<tr><td>Block containing \p n elements, starting at position \p i
+<tr><td>%Block containing \p n elements, starting at position \p i
\link DenseBase::segment() * \endlink</td>
<td>\code
-VectorXf v;
-std::cout << v.segment(i,n);\endcode </td>
+vector.segment(i,n);\endcode </td>
<td>\code
-Vector3f m;
-std::cout << v.segment<n>(i);\endcode </td>
+vector.segment<n>(i);\endcode </td>
</tr>
</table>
@@ -262,7 +237,7 @@ C++ code:
</td>
<td>
Output:
-\include Tutorial_BlockOperations_vector.out
+\verbinclude Tutorial_BlockOperations_vector.out
</td></tr></table>
\li \b Next: \ref TutorialAdvancedInitialization
diff --git a/doc/C07_TutorialReductionsVisitorsBroadcasting.dox b/doc/C07_TutorialReductionsVisitorsBroadcasting.dox
index 1930d7a94..93d18f47b 100644
--- a/doc/C07_TutorialReductionsVisitorsBroadcasting.dox
+++ b/doc/C07_TutorialReductionsVisitorsBroadcasting.dox
@@ -30,7 +30,7 @@ which returns the addition of all the coefficients inside a given matrix or arra
Example: \include tut_arithmetic_redux_basic.cpp
</td>
<td>
-Output: \include tut_arithmetic_redux_basic.out
+Output: \verbinclude tut_arithmetic_redux_basic.out
</td></tr></table>
The \em trace of a matrix, as returned by the function \c trace(), is the sum of the diagonal coefficients and can also be computed as efficiently using <tt>a.diagonal().sum()</tt>, as we will see later on.
diff --git a/doc/examples/Tutorial_BlockOperations_block_assignment.cpp b/doc/examples/Tutorial_BlockOperations_block_assignment.cpp
index 0419a500f..56ca69a6e 100644
--- a/doc/examples/Tutorial_BlockOperations_block_assignment.cpp
+++ b/doc/examples/Tutorial_BlockOperations_block_assignment.cpp
@@ -6,26 +6,13 @@ using namespace Eigen;
int main()
{
- MatrixXf m(3,3), n(2,2);
-
+ Array33f m;
m << 1,2,3,
4,5,6,
7,8,9;
-
- // assignment through a block operation,
- // block as rvalue
- n = m.block(0,0,2,2);
-
- //print n
+ Array<float,5,5> n = Array<float,5,5>::Constant(0.6);
+ n.block(1,1,3,3) = m;
cout << "n = " << endl << n << endl << endl;
-
-
- n << 1,1,
- 1,1;
-
- // block as lvalue
- m.block(0,0,2,2) = n;
-
- //print m
- cout << "m = " << endl << m << endl;
+ Array33f res = n.block(0,0,3,3) * m;
+ cout << "res =" << endl << res << endl;
}
diff --git a/doc/examples/Tutorial_BlockOperations_colrow.cpp b/doc/examples/Tutorial_BlockOperations_colrow.cpp
index e639324b2..e98263057 100644
--- a/doc/examples/Tutorial_BlockOperations_colrow.cpp
+++ b/doc/examples/Tutorial_BlockOperations_colrow.cpp
@@ -1,15 +1,14 @@
#include <Eigen/Dense>
#include <iostream>
-using namespace Eigen;
int main()
{
- MatrixXf m(3,3);
-
+ Eigen::MatrixXf m(3,3);
m << 1,2,3,
4,5,6,
7,8,9;
-
- std::cout << "2nd Row: "
- << m.row(1) << std::endl;
+ std::cout << "2nd Row: " << m.row(1) << std::endl;
+ m.col(0) += m.col(2);
+ std::cout << "m after adding third column to first:\n";
+ std::cout << m << std::endl;
}
diff --git a/doc/examples/Tutorial_BlockOperations_corner.cpp b/doc/examples/Tutorial_BlockOperations_corner.cpp
index 96c6df62b..3a31507aa 100644
--- a/doc/examples/Tutorial_BlockOperations_corner.cpp
+++ b/doc/examples/Tutorial_BlockOperations_corner.cpp
@@ -2,26 +2,16 @@
#include <iostream>
using namespace std;
-using namespace Eigen;
int main()
{
- MatrixXf m(4,4);
-
+ Eigen::Matrix4f m;
m << 1, 2, 3, 4,
5, 6, 7, 8,
9, 10,11,12,
13,14,15,16;
-
- //print first two columns
- cout << "-- leftCols(2) --" << endl
- << m.leftCols(2) << endl << endl;
-
- //print last two rows
- cout << "-- bottomRows(2) --" << endl
- << m.bottomRows(2) << endl << endl;
-
- //print top-left 2x3 corner
- cout << "-- topLeftCorner(2,3) --" << endl
- << m.topLeftCorner(2,3) << endl;
+ cout << "m.leftCols(2) =" << endl << m.leftCols(2) << endl << endl;
+ cout << "m.bottomRows<2>() =" << endl << m.bottomRows<2>() << endl << endl;
+ m.topLeftCorner(1,3) = m.bottomRightCorner(3,1).transpose();
+ cout << "After assignment, m = " << endl << m << endl;
}
diff --git a/doc/examples/Tutorial_BlockOperations_print_block.cpp b/doc/examples/Tutorial_BlockOperations_print_block.cpp
index a2d0db864..0fdefecdf 100644
--- a/doc/examples/Tutorial_BlockOperations_print_block.cpp
+++ b/doc/examples/Tutorial_BlockOperations_print_block.cpp
@@ -1,14 +1,18 @@
#include <Eigen/Dense>
#include <iostream>
-using namespace Eigen;
int main()
{
- MatrixXf m(3,3);
-
- m << 1,2,3,
- 4,5,6,
- 7,8,9;
-
- std::cout << m.block(0,0,2,2) << std::endl;
+ Eigen::MatrixXf m(4,4);
+ m << 1, 2, 3, 4,
+ 5, 6, 7, 8,
+ 9,10,11,12,
+ 13,14,15,16;
+ std::cout << "Block in the middle" << std::endl;
+ std::cout << m.block<2,2>(1,1) << std::endl << std::endl;
+ for (int i = 1; i < 4; ++i)
+ {
+ std::cout << "Block of size " << i << std::endl;
+ std::cout << m.block(0,0,i,i) << std::endl << std::endl;
+ }
}
diff --git a/doc/examples/Tutorial_BlockOperations_vector.cpp b/doc/examples/Tutorial_BlockOperations_vector.cpp
index 211b55472..4a0b02342 100644
--- a/doc/examples/Tutorial_BlockOperations_vector.cpp
+++ b/doc/examples/Tutorial_BlockOperations_vector.cpp
@@ -2,23 +2,13 @@
#include <iostream>
using namespace std;
-using namespace Eigen;
int main()
{
- VectorXf v(6);
-
+ Eigen::ArrayXf v(6);
v << 1, 2, 3, 4, 5, 6;
-
- //print first three elements
- cout << "-- head(3) --" << endl
- << v.head(3) << endl << endl;
-
- //print last three elements
- cout << "-- tail(3) --" << endl
- << v.tail(3) << endl << endl;
-
- //print between 2nd and 5th elem. inclusive
- cout << "-- segment(1,4) --" << endl
- << v.segment(1,4) << endl;
+ cout << "v.head(3) =" << endl << v.head(3) << endl << endl;
+ cout << "v.tail<3>() = " << endl << v.tail<3>() << endl << endl;
+ v.segment(1,4) *= 2;
+ cout << "after 'v.segment(1,4) *= 2', v =" << endl << v << endl;
}